Neste trabalho, foram estudadas a construção dos conjuntos dos números naturais (N), dos números inteiros (Z), dos números racionais (Q) e dos números reais (R). A construção dos números naturais foi realizada por meio dos axiomas de Dedekind. A construção dos números inteiros foi feita por classes de equivalência em N × N. A construção dos números racionais foi realizada por classes de equivalência de elementos admissíveis em Z × Z. Finalmente, a construção do conjunto do números reais foi realizado através dos chamados cortes de Dedekind, partindo do conjunto dos números racionais.