Influence of Operating Temperature on the Performance of Photovoltaic Solar Tile (BIPV) for the Western Region of Paraná

Imagem de Miniatura




Becerra Díaz, Cristóbal Alfredo

Título da Revista

ISSN da Revista

Título de Volume



The efficiency of photovoltaic solar cells decreases linearly with increasing temperature, fundamentally due to the increase in the concentrations of the charge carriers, causing fluctuations in the operating temperature and consequently in the photovoltaic conversion process, affecting the efficiency of the cell. In this paper, a study is presented on the phenomenon of temperature decrease applied in integrated photovoltaic cells - also called Building Integrate Photovoltaics - dimensioned on a photovoltaic solar tile with an superimposed photovoltaic arrangement model, in conditions of simulation of Standard Test Conditions for 1000 W/m2 irradiation, for maximum and minimum Summer temperatures of Foz do Iguaçu during 2017-2018. The simulation was performed with Comsol Multiphysics® software and used as a constituent material of the photovoltaic solar tiles Concrete, Polypropylene and PVC. The study compares the effect of varying efficiency with varying temperatures and tile designs for a 16% efficiency value of the datasheet, resulting in a maximum decrease of 12.53% in the cell at 30.6°C, and reduction of linear efficiency of approximately 0.05%/°C for the proposed models. Also, a comparison was made to verify how they influence the materials in the civil-structural characteristics of the roof. Hereafter, the simulated system is compared with the polycrystalline, monocrystalline and CIS photovoltaic systems in some cases with the literature, comparing the decrease of efficiency and power with the temperature in the same conditions of the study, obtaining a divergence between 0.05%/°C and 0.24%/°C.



Building Integrate Photovoltaics, Solar Tile, Heat Transfer