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DYNAMIC OPTIMIZATION OF CLASSIFICATION SYSTEMS FOR ADAPTI VE
INCREMENTAL LEARNING

N. KAPP, Marcelo

ABSTRACT

An incremental learning system updates itself in response to incoming data without reexam-
ining all the old data. Since classification systems capableof incrementally storing, filtering,
and classifying data are economical, in terms of both space and time, which makes them im-
mensely useful for industrial, military, and commercial purposes, interest in designing them
is growing. However, the challenge with incremental learning is that classification tasks can
no longer be seen as unvarying, since they can actually change with the evolution of the data.
These changes in turn cause dynamic changes to occur in the classification system’s parameters
If such variations are neglected, the overall performance of these systems will be compromised
in the future.

In this thesis, on the development of a system capable of incrementally accommodating new
data and dynamically tracking new optimum system parameters for self-adaptation, we first ad-
dress the optimum selection of classifiers over time. We propose a framework which combines
the power of Swarm Intelligence Theory and the conventionalgrid-search method to progres-
sively identify potential solutions for gradually updating training datasets. The key here is to
consider the adjustment of classifier parameters as a dynamic optimization problem that de-
pends on the data available. Specifically, it has been shown that, if the intention is to build
efficient Support Vector Machine (SVM) classifiers from sources that provide data gradually
and serially, then the best way to do this is to consider modelselection as a dynamic process
which can evolve and change over time. This means that a number of solutions are required,
depending on the knowledge available about the problem and uncertainties in the data. We
also investigate measures for evaluating and selecting classifier ensembles composed of SVM
classifiers. The measures employed are based on two different theories (diversity and margin)
commonly used to understand the success of ensembles. This study has given us valuable
insights and helped us to establish confidence-based measures as a tool for the selection of
classifier ensembles.

The main contribution of this thesis is a dynamic optimization approach that performs incre-
mental learning in an adaptive fashion by tracking, evolving, and combining optimum hypothe-
ses over time. The approach incorporates various theories,such as dynamic Particle Swarm
Optimization, incremental Support Vector Machine classifiers, change detection, and dynamic
ensemble selection based on classifier confidence levels. Experiments carried out on synthetic
and real-world databases demonstrate that the proposed approach outperforms the classifica-
tion methods often used in incremental learning scenarios.



OPTIMISATION DYNAMIQUE POUR L’APPRENTISSAGE INCRÉMENTAL
ADAPTATIF DES SYSTÈMES DE CLASSIFICATION

N. KAPP, Marcelo

RÉSUMÉ

Lors de l’arrivée de nouvelles données, un système d’apprentissage incrémental se met à jour
automatiquement sans réexaminer les anciennes données. Lors d’un apprentissage incrémen-
tal, les paramètres des systèmes de classification ne sont plus considérés comme invariants
puisqu’ils peuvent évoluer en fonction des données entrantes. Ces changements causent des
variations dans l’ajustement des paramètres du système de classification. Si ces variations sont
négligées, la performance finale d’un tel système peut être ultérieurement compromise. De tels
systèmes, adaptés au problème de classification, sont très utiles à des fins industrielles ou mili-
taires car ceux-ci sont à la fois rapides d’exécution et peu gourmands en mémoire. On observe
en conséquence un intérêt grandissant à l’élaboration de tels systèmes.

L’objectif principal de cette thèse est de développer un système capable de s’adapter de façon
incrémentale à l’arrivée de nouvelles données, de suivre etd’analyser dynamiquement les
paramètres du système optimal pour ainsi permettre son adaptation automatique à de nouvelles
situations. Pour ce faire, nous commençons par aborder le problème de la sélection optimale
des classificateurs en fonction du temps. Nous proposons unearchitecture qui combine la
puissance de la théorie de l’intelligence des essaims avec la méthode plus conventionnelle de
recherche par grilles.

Des solutions potentielles sont progressivement identifiées et mises en évidence pour des bases
de données graduellement mises à jour. L’idée principale ici est de considérer l’ajustement
des paramètres du classificateur comme un problème d’optimisation dynamique dépendant des
données présentées au système de manière continue. En particulier, nous avons montré que si
l’on cherchait à élaborer un classificateur SVM (Support Vector Machines) efficace à partir de
sources de données différentes, graduelles ou en séries, mieux valait considérer le processus de
sélection de modèles comme un processus dynamique qui peut évoluer et changer. Ainsi, les
différentes solutions sont adaptées au fil du temps en fonction l’évolution des connaissances
accessibles sur le problème de classifications et de l’incertitude sur les données.

Ensuite, nous étudions aussi des mesures pour l’évaluationet la sélection d’ensembles de clas-
sificateurs composés de SVMs. Les mesures employées sont basées sur les théories de la
diversité et la marge communément utilisées pour expliquerla performance des ensembles de
classificateurs. Cette étude révèle des informations précieuses pour l’élaboration de mesures
de confiance pouvant servir pour la sélection des ensembles de classificateurs.

Finalement, la contribution majeure de cette thèse est une approche d’optimisation dynamique
qui réalise un apprentissage incrémental et adaptatif en suivant, faisant évoluer et combinant
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les hypothèses d’optima en fonction du temps. L’approche fait usage de concepts issus de dif-
férentes théories expérimentales, telles que l’optimisation dynamique de particules d’essaims,
les classificateurs SVM incrémentaux, la détection de changement et la sélection dynamique
d’ensembles à partir de niveaux de confiance des classificateurs. Des expériences menées sur
des bases de données synthétiques et réelles montrent que l’approche proposée surpasse les
autres méthodes de classification souvent utilisées dans des scénarios d’apprentissage incré-
mental.
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INTRODUCTION

Pattern classification systems have been devised for many applications and in many fields in

the past. Intended for different purposes but sharing the same principles, these systems are

designed to teach computers to solve problems based on past experiences. To build a pattern

classification system, a considerable amount of data is processed and compared with patterns

already stored in memory. In the last four decades, remarkable advances have been made in a

number of recognition fields, e.g. recognition, speech, handwriting, etc. In fact, nowadays, if

sufficient data are provided, it is possible to make an almostperfect classifier for any pattern

classification problem.

However, despite the advances, most of these systems have been built using real-world data that

are considered to be stationary. In other words, their development is based on the assumption

that the available training data are always adequate, representative, and available in sufficient

quantity. Consequently, once the classification system hasbeen trained in a laboratory phase,

the assumption is that it will be capable of classifying new,future instances indefinitely in the

real world, i.e. in its operational phase. However, the incompleteness of training data is a com-

mon problem when developing many real-world applications.For instance, in face recognition

applications, due to the large variation in facial expressions, lighting conditions, makeup, and

hairstyles, it is very difficult to collect data on all the possibilities in advance. Likewise, there

are unlimited ways of writing and speaking when developing handwriting or speech recogni-

tion systems. Thus, even with the knowledge that the performances of classification systems

are highly dependent on data, to wait until the entire acquisition and storage process has been

complete would be impractical, uneconomical, or even impossible. An alternative would be to

implement systems capable of learning incrementally.

Incremental learning systems update trained models in response to incoming data during their

operational phase, without reexamining all the old data. Asa result, they are economical, in

terms of both space and time, which makes them immensely useful for industrial, military,

and commercial purposes. Because of this, interest in designing classification systems capable
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of incrementally storing, filtering, and classifying data is growing. At the same time, there

is a challenge with incremental learning, which is that classification tasks can be no longer

seen as unvarying, since they can actually change accordingto the evolution of data. These

changes make the adjustment of a classification system’s parameters a dynamic process. If

such variations are neglected, the overall performance of these systems will be compromised

in the future, resulting in the defeat of even the most successful conventional machine learning

techniques, because they are not capable of adapting.

In light of this, a classification system must be able to incrementally accommodate new data

and dynamically adapt itself in order to better maintain itsoptimality with respect to internal

parameters, computational cost, and generalization performance. This brings us to the central

topic of this thesis, which is to contribute, with new solutions and breakthroughs, to the im-

plementation of an adaptive incremental system based on dynamic optimization techniques. In

particular, experiments are carried out using Support Vector Machine (SVM) classifiers as base

classifiers, and synthetic and real-world databases involving different types of applications,

such as: handwritten digits, multisensor remote-sensing images, forward-looking infrared ship

images, etc. Therefore, databases with different numbers of classes, features, and training

samples are used when testing approaches with different learning strategies (i.e. gradual and

incremental) in a supervised learning context.

Problem Statement

A fundamental problem with incremental learning in static environments is that the best set

of a classification system’s parameters can vary over time, owing to changes in the incoming

data. Such changes can, for example, be minor fluctuations (random or systematic [70]) in

the underlying probability distributions. These usually result from either sample shifting or

the natural evolution of classification problems, considering that new knowledge comes in part

from new observations at different times. Therefore, the sample distributions of training data

chunks may change and affect the system in several ways, since its decision boundaries are

estimated according to those distributions. In the literature, these possible data changes are
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defined aspopulation drifts[58, 109]. The problem in incremental learning scenarios isthat

they are unavoidable, even though the application environment seems to be static (i.e. where

the numbers of classes, features, etc. remain constant).

Consequently, the incremental updating of a classificationsystem might require not only re-

viewing its existing models in terms of knowledge acquired and new data, but also in terms of

its internal parameters set with respect to such data variations. Otherwise, the whole system

may become obsolete and so fail to achieve a better adaptation in the future. This assumption

might explain why, even though significant research has beenconducted to design incremental

learners [13, 109, 93, 26, 88], the results are not often as satisfactory as those for batch mode

learners (i.e. when all data are considered). Taking this into account, we propose to optimize

the traditional incremental learning approaches that consider the adjustment of parameters as

a static process (i.e. constant parameter values are employed infinitely) over time, to increase

the system’s power of generalization and decrease its complexity.

In addition, as we use the SVM classifier here, because of its robustness against the well known

curse of dimensionality[38], the task of searching for optimum hyper parameter values is a

primary problem that must be faced, the so-called SVM model selection problem. Solving

this problem is important because, although SVMs are very powerful classifiers in theory, their

efficiency in practice relies on the optimal selection of hyper parameters. This is because a

naïve orad hocchoice of values for its hyper parameters can lead to poor performance in

terms of generalization error, as well as high complexity interms of the number of support

vectors identified. In recent years, many model selection approaches have been proposed in

the literature. They differ basically in two aspects: (1) the selection criterion; and (2) the

searching methods used. The selection criterion, i.e. the objective function, is a measure that

guides the search. Some of these criteria are specifically related to the SVM formulation,

such as radius margin bound [118], span bound [19], and support vector count [117]. Others

are classical, such as the well-known cross validation and hold-out estimations. The most

common searching methods applied are the gradient descent techniques [27, 20, 3], the grid-

search techniques [18, 47, 49], and the evolutionary techniques, such as genetic algorithms
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(GA) [22, 25, 107, 21], the covariance matrix adaptation evolution strategy (CMA-ES) [40],

and, more recently, Particle Swarm Optimization (PSO) [29,52].

Although some of these methods have practical implementations, e.g. gradient descent, their

application is usually limited by hurdles in the model selection process. For instance, the

gradient descent methods require a differentiable objective function with respect to the hyper

parameters and the kernel, which needs to be differentiableas well. Similarly, multiple local

minima in objective functions are a nightmare for gradient descent-based methods. To over-

come this, the application of grid-search or evolutionary techniques is a very attractive option.

Unfortunately, in the case of the grid-search method, a gooddiscretization of the search space

in fixed values is crucial for achieving high performances. So, the main challenges in the SVM

model selection research field are considered to be: (1) the choice of objective function, (2)

the presence of local minima in the search space, and (3) the computational time required for

model selection task. In addition to these typical parameter estimation difficulties, the esti-

mation of parameters over time from incoming data at different times aggravates the model

selection problem. This is because, when knowledge of the problem is limited, or the data

are noisy or arrive in batches over time, the model selectiontask and its performance can pro-

gressively degrade. So, we consider a gradual learning scenario (i.e. when historical data are

not discarded) in order to study the dynamism of the parameter search space with respect to

different levels of uncertainty.

An interesting alternative for improving the performance of single classifiers is the fusion of

classifier decisions into ensembles, especially when the level of uncertainty is high, i.e. when

only small sample sets are available [116]. However, despite all these efforts, our understand-

ing of the effectiveness of the ensemble methods is still lacking, and is driving new research

on classifier fusion. As a result, several works on ensemblesof classifiers (EoC) have been

conducted to find measures that could be well correlated withensemble accuracy and so used

to evaluate and select the best classifier ensembles [67, 99,36, 28, 125, 96, 69, 73, 122, 9, 116,

110]. Nevertheless, there is a consensus in the literature indicating that some diversity exists

between ensemble members, and that this diversity is the main source of possible improve-
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ment in overall performance [28, 69, 73, 122, 9]. Although itis well accepted that diversity

is, as far as we know, a necessary condition for improving overall accuracy, there is no general

agreement on how to quantify it or deal with it. Thus, even though the application of EoC is

clearly advantageous, the search for an efficient objectivefunction for selecting the best en-

semble from a pool of classifiers is still a persistent problem. This is a particularly important

issue with respect to the development of an incremental learning system, as considered in this

thesis.

Research Goals and Contributions

In our effort to implement an adaptive classification system, we accomplish three major goals.

The first is to develop a method for searching for optimum values for SVM hyper parameters

over time. We face two main challenges in this endeavor: (1) overcoming common difficulties

involving optimization processes, such as the presence of multimodality or discontinuities in

the parameter search space, and (2) quickly identifying optimum solutions that fit both histori-

cal data and new, incoming data. If we do not meet these challenges, the processes for searching

hyper parameters over sequences of datasets could perform poorly or be very time-consuming.

To tackle these two issues, we first study the SVM model selection task as a dynamic opti-

mization problem considering a gradual learning context inwhich the system can be tested

with respect to different levels of uncertainty. In particular, we introduce a Particle Swarm

Optimization-based framework which combines the power of Swarm Intelligence Theory with

the conventional grid-search method to progressively identify and evaluate potential solutions

for gradually updated training datasets. The key idea is to obtain optimal solutions via re-

evaluations of previous solutions (adapted grid-search) or via new dynamic re-optimization

processes (dynamic Particle Swarm Optimization, or DPSO).Experimental results demonstrate

that the proposed method outperforms the traditional approaches, while saving considerable

computational time. This framework was presented in [57, 55].

The second goal is to experimentally investigate several objective functions for the evaluation

and selection of EoC. This is an important step in improving the applicability of SVM en-
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sembles in the classification system proposed here. In this study, we analyze classifier fusion

empirically through the relationship between two theoriesrelated to an ensemble’s success,

i.e. diversity measures and margin theory, with ensemble accuracy. In order to achieve this,

we first survey some classical diversity measures and some measures related to margin theory.

Then, an experimental protocol similar to that introduced in [116] for characterizing SVM en-

sembles is employed to evaluate the measures and draw results. Then, from a discussion on

those results, we try to answer some questions currently arising from the literature, such as the

following: Which measure offers the best guidance in classifier fusion evaluation? How are the

diversity measures related to each other? Is there a relationship among diversity, margins, and

ensemble accuracy? What are the best measures for observingsuch a relationship? Finally, we

conclude this study with valuable insights on methods for fusion evaluation and selection of

EoC. These investigations are very important, since it has been demonstrated in the literature

that the fusion of classifier decisions into ensembles can actually improve the performance of

single classifiers, even SVMs [116]. However, despite theseefforts, our understanding of the

effectiveness of ensemble methods continues to perplex, and this is driving new research on

classifier fusion [67, 99, 36, 28, 125, 96, 69, 73, 122, 9, 116,110]. Most importantly, this

study provides valuable insights on how these two theories can influence each other and shows

us how confidence-based measures can be of greater interest than diversity measures for the

selection of EoC. A study of this nature was presented in [54].

The final goal is to propose a classification system that performs adaptive incremental learn-

ing. The method is implemented based on the following two principles: (1) the incremental

accommodation of new data by updating models, and (2) the dynamic tracking of new, opti-

mum system parameters for self-adaptation. Our aim is to overcome a problem that arises with

incremental learning, which is the obsolescence of the bestset of classification system parame-

ters as a result of incoming data. In particular, the proposed method relies on a new framework

incorporating various techniques, such as single incremental SVM (ISVM) classifiers, change

detection, DPSO, and, finally, dynamic selection of EoC. Thegoal of our method is to update,

evolve, and combine multiple heterogeneous hypotheses (i.e. models with different parame-
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ters and knowledge) over time, and hence to maintain the system’s optimality with respect to

internal parameters, computational cost, and generalization performance. As a result, adapta-

tions are realized in two levels, beyond what is achieved by the incremental learning aspect

alone and into the levels of base mode parameters and decision fusion. Thus, unlike the tra-

ditional incremental learning approaches, which considerclassifier parameter adjustment as a

static process (i.e. constant parameter values are employed to update the system infinitely), we

are suggesting that they be optimized over time to increase their power of generalization and

decrease their complexity. In order to achieve this, our underlying hypothesis, set out here,

is to consider the incremental learning process as a dynamicoptimization process, in which

optimum hypotheses are dynamically tracked, evolved, and combined over time.

The proposed method is validated and demonstrates its efficiency through experiments with

synthetic and real-world databases. Results in single and multiple classifier configurations are

compared with those obtained with these strategies: SVM optimized with PSO in batch mode,

ISVM with parameter values fixed beforehand, and two increment-capable classifiers (1-NN

and Naïve Bayes), which are widely applied in incremental learning studies. The performances

of these classifiers are considered “no less" than those of their batch versions [87]. An incre-

mental ensemble strategy with optimized parameters and different combination rules is also

employed for comparison. As additional objectives of this study, we try to verify whether or

not: (1) incremental learning with SVM can achieve similar performances to those obtained

in batch mode; (2) adaptation of the system’s parameters over time is actually a dynamic opti-

mization problem, and, if so, it is important to achieve highperformances; and (3) the dynamic

selection of EoC can lead to better results than simply combining all the pools of classifiers

available. We introduce this method and results in [56].

The additional contributions of this work are to provide insights on strategies for optimizing

and selecting classifiers, on the use of memory-based mechanisms, and on dynamic optimiza-

tion methods.



8

Organization of the thesis

The thesis consists of four chapters. Chapter 1 and chapter 2present a brief literature review

of the main research topics and works related to the development of classification systems

capable of performing incremental learning. The notion of data changes is also described.

Then, general approaches and classifiers that have been proposed to build classification systems

capable of learning incrementally are surveyed. The research directives adopted in this thesis

are also discussed.

In chapter 3, we empirically demonstrate that the SVM model selection problem performed

over time can, in fact, be treated as a dynamic optimization problem. Based on this assumption,

a PSO-based framework, which combines the power of Swarm Intelligence Theory with the

conventional grid-search method is introduced. Experimental results with this method and with

traditional approaches are presented.

In chapter 4, we investigate nine measures from two different theories (diversity measures

and margin theory) to be employed in the evaluation and selection of SVM ensembles. From

empirical results, discussions on how these two theories can influence each other and on the

application of margin-based measures are described.

In chapter 5, the proposed adaptive incremental learning method is presented. We describe each

additional module composing the framework, and explain thevarious strategies for adaptation

and performance improvement, such as dynamic parameter optimization and the selection of

ensembles based on their respective confidence levels . Experiments and results obtained are

reported. Finally, we outline our conclusions and suggest guidelines for future work.



CHAPTER 1

PATTERN CLASSIFICATION IN IMPRECISE ENVIRONMENTS

The development of classification systems capable of performing adaptive incremental learn-

ing requires an understanding of the challenges inherent toclassification in imprecise envi-

ronments, i.e. environments where the uncertainty level inthe incoming data is usually high

and where different types of data change can be involved. In this chapter, the two main con-

cepts regarding pattern classification in such environments are introduced: (1) the capability of

incremental learning; and (2) the various changes that can occur in the data.

1.1 Incremental Learning Definition

Incremental learning means learning new data over time without keeping all the old data for

subsequent processing, thereby reducing training time andcomputational effort. However, an

incremental learner should be able to adapt to new information without corrupting or forget-

ting previously learned information. In other words, it must deal with the so-called stability-

plasticity dilemma, which describes the state where a stable classifier will preserve existing

knowledge, but will not accommodate new information, whilea completely plastic classifier

will learn new information, but will not conserve prior knowledge [93].

Incremental learning approaches are very attractive for solving several real world classifica-

tion problems, especially those where: (1) the data acquisition process is expensive, and so

only a few samples become available over time; (2) the data generation process is itself time-

dependent, as in time series data; or (3) the training data available are too large to be loaded

into computer memory [109]. Basically, in agreement with Polikar et al. [93], an incremental

learning algorithm must meet the following criteria:

a. It should be able to learn additional information from newdata;

b. It should not require access to the original data used to train the existing classifier;
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c. It should preserve previously acquired knowledge, i.e. it should not suffer from catas-

trophic forgetting;

d. It should be able to accommodate new classes that may be introduced with new data.

It is important to note that incremental learning as referred to here is a process of updating

a classification system with suitably sized samples of datasets at a time, i.e. block by block,

and not one sample at a time, which is called online learning or instance-by-instance learning

[109]. In the literature, a generic algorithm for incremental learning may be defined in five

steps [77]:

1) Learn rules from examples;

2) Store rules, discard examples;

3) Use rules to predict, navigate, etc.;

4) When new examples arrive, learn new rules using old rules and new instances;

5) Go to step 2.

To summarize, the general idea behind incremental learningis that the knowledge base is in-

creased incrementally as each new piece of information is obtained. For this reason, classifica-

tion systems with incremental learning capabilities can more accurately represent the manner

in which humans learn.

Unfortunately, as new small pieces of information arrive atdifferent times during incremental

learning, the whole learning/classification process can suffer disturbances, depending on the

changes occurring in the data. We explain the possible changes to the data in the next section.
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1.2 Concept Drift Issues

In many real world problems, a huge quantity of new information is created dynamically mo-

ment by moment; for example, applications involving data streaming: spam filtering, financial

prediction, credit card fraud protection, network intrusion and surveillance video streams, stock

market trend analysis, etc. Most of the time, these data mustbe stored, filtered, or organized in

some way. Such tasks demand powerful computers and systems capable of dealing with huge

volumes of data and data distributions that may change over time.

A persistent challenge with incremental updating is that possible variations in problem data

distributions can affect system performance. In the literature, these changes in the data are

called concept drifts, specificallypopulation driftsor real drifts, depending on the type of

change. We explain these changes below:

• Real drifts: Real drifts refer to changes in the target concepts (e.g. class labels) [58].

This kind of data drifting occurs for a category of real-world problems. For example, in

object tracking or user-interest-guided applications, the class of interest varies over time.

This means that, in order to efficiently predict data, the system might incrementally learn

data about the current concept, and, at the same time, removeold, conflicting concepts.

Thus, in real-drift situations, the incremental learning process must cope with population

drifts resulting from updating phases, and also with changes inherent to the nature of the

problem, which can sometimes even invalidate the knowledgealready acquired by the

system.

• Population drifts: Population drifts refer to hidden changes in the underlying data dis-

tributions intrinsically related to the incremental learning process. This is because they

result, for example, from sampling shifting, which dependson the order and the repre-

sentativity of samples present in the incoming data. In suchcases, the concepts (classes)

are usually predefined, but their distributions can evolve when new data arrive. For exam-

ple, the frequency of new types of spam mails and their features may change drastically

over time, which causes variations in the data distributions and decision boundaries that
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distinguish whether or not a message is spam [31]. This meansthat population drifts are

unavoidable in the incremental learning process, even whenthe application environment

seems to be static or when real drifts are involved.

Several examples involving real-world applications can beprovided to better illustrate

population drifts. For example, handwriting recognition systems are usually trained from

a fairly large amount of data. Nevertheless, there are unlimited ways of writing a charac-

ter, and it would be impractical, if not impossible, to collect and store every possibility.

In this connection, a problem arises when systems implemented from specific user styles

are exposed to other styles, e.g. different populations andregions. The systems would

certainly not achieve the same success for both styles. To illustrate, in Figure 1.1, we

show some isolated digits handwritten in the North Americanand Brazilian styles. It is

easy to see that variations in the two styles, e.g. for the numbers 1, 2, 7, etc., could be

reflected in changes to the data distribution classes, whichwould require updating of the

system in order to prevent compromising future classifications.

(a) North American (b) Brazilian

Figure 1.1 Examples of variations between handwritting styles. 1.1(a)
Handwritten digits from North American (NIST SD-19 database) and 1.1(b)

handwritten digits from a Brazilian database of checks [84].
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In probabilistic terms, the changes that may occur in a classification problem are related to

[58, 70]:

• Prior probabilities for thec classes,P (ω1), . . . , P (ωc);

• Class-conditional probability distributions,p(x|ωi),, i = 1, . . . , c; or

• Posterior probabilitiesP (ωi|x), i = 1, . . . , c.

Population drifts result from changes that occur in theP (ωi) andp(x|ωi) of classes, while real

drifts are related to changes in theP (ωi|x) of classes. Figure 1.2 depicts these types of concept

drifts in probabilistic terms. Consider the class densities for two classes:ω1 andω2, and the

optimal decision boundary of separation regarding one input variablex, as illustrated in Figure

1.2(a). The effect on the decision boundary of the various kinds of drifts mentioned previously

are subsequently depicted in Figures 1.2(b), 1.2(c), and 1.2(d). Figure 1.2(b) illustrates a drift

caused by the priors. Then, Figure 1.2(c) depicts a driftingin class density resulting from a

sampling shift for the classω1 between thex values 0.65 and 0.8, for example. Finally, a

drifting in the posterior probability of the classω1, and also between thex values 0.65 and 0.8,

is shown in Figure 1.2(d).

Now that the definition of incremental learning has been presented and the difficulties it com-

monly encounters explained, in the next section we survey the main approaches introduced in

the literature to deal with these data changes and for incremental learning to occur.
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Figure 1.2 Illustrations of different kinds of data driftin g. (a) Initial. Data
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CHAPTER 2

RELATED APPROACHES

In the previous chapter, the definition of incremental learning was presented, along with the

challenges involved in keeping a classification system up todate. In addition, we have seen

that population drift is a common difficulty which needs to befaced by incremental learning

processes with the presence, or not, of real drifts. Taking this into account and for the sake of

clarity, a literature review is provided in this chapter on the main approaches and techniques

that have been employed for dealing with these situations.

First, the main approaches applied in this research area aresurveyed: (1) instance selection,

(2) instance weighting, (3) incremental classifiers, and (4) ensemble of classifiers. We start by

giving a general overview of these approaches, as illustrated in Figure 2.1. They are then sum-

marized, with reference to their respective related works.Finally, we present a discussion on

the research directives adopted in our thesis for the implementation of an adaptive incremental

learning method, which is the research domain at issue here.

Handling Data Changes Overtime

Combiners
Incremental
Ensembles

Instance
Weighting

Instance
Selection

Ensemble
Learning

Filtering of
Data

Chunking of
DataData

Re−using of

Incremental
Classifier

Approaches for Learning and 

Dynamic

Figure 2.1 General overview of techniques for developing adaptive
classification systems.
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2.1 Instance Selection

Instance selection-based methods handle data changes, especially those related to real drifts, by

learning from a “time-window" of relevant examples. The relevance of the examples is usually

measured by their “age" or correctness, depending on the strategy. A generic example of this

method is depicted in Figure 2.2. Consider an existing learner and a selection criterion; the

instance selector carefully selects relevant examples from the data stream and stores them in a

time-window. When the number of examples in that window reaches a maximumof T items,

the learner is entirely recreated or incrementally updatedfrom the window. Older examples, or

examples that are no longer relevant, are discarded.

Related works we can cite are those of Schlimmer and Granger [100], Widmer and Kubat

[121], Maloof and Michalski [78], and Lazarescu et al. [75].Schlimmer and Granger [100]

introduced the STAGGER system, which maintains a set of concept descriptions (sets of sym-

bols numerically weighted by Bayesian weighting measures). When the system fails to predict

a membership class for a new instance, a new, more complex concept description is built by

the iterative use of feature construction, where the most relevant concept is selected.

In [121], Widmer and Kubat introduced the FLORA algorithm, which learns current concepts

by implementing a rule system from a window of recent examples. The algorithm learns new

instances incrementally, while “forgetting" the oldest ones. Algorithm variants (FLORA 2,

3, and 4) have been also been implemented with different characteristics, such as: the use

of an adaptive window size, a store of “stable" concepts, etc. In this same vein, Maloof and

Michalski [78] have introduced a partial memory system, called AQ-PM, which tests training

instances and selects only misclassified examples to store in the window for future learning

phases. A user-defined threshold controls a forgetting mechanism. Klinkenberg and Joachims

[64] suggest dynamically adjusting the window size by monitoring the system’s performance

on the last chunk of data. The authors train the Support Vector Machine (SVM) classifier

with different window sizes from previous data and select the window size that maximizes

the accuracy on the last chunk of data. Another variation of the original instance selection



17

approach has been introduced by Lazarescu et al. [75], whichuses an unsupervised algorithm

and not one, but three multiple competing windows of different sizes to give the method more

flexibility.
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Figure 2.2 Illustration of the instance selection approach.

2.2 Instance Weighting

Instance weighting methods assign weights to instances according to their age and/or their

influence in the current concept. Unlike instance selectionmethods, where examples are con-

sidered equally relevant in the window, these methods try tocreate different degrees of rele-

vance for each example by computing weights for all instances, even the relevant ones. This

approach has not often been applied, probably because it calls for learning algorithms capable

of processing weighted instances. For example, in [62, 65],the authors implemented instance

weighting by employing an SVM classifier. Furthermore, theyhave a tendency to overfit the

data, as observed in [63].

2.3 Incremental Classifier

The incremental classifier approach refers to incremental model maintenance. In other words,

approaches in this group employ a classifier algorithm capable of being continually updated.

The incremental learning process with a single classifier can be summarized as illustrated in

Figure 2.3. LetD(1),D(2), . . . ,D(n) be datasets available to the learning algorithm at instants
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k = 1, 2, . . . , n. The learning algorithm starts with an initial classifier (hypothesis)M(1)

trained fromD(1). Then,M(1) is updated toM(2) on the basis ofD(2), andM(2) is updated

toM(3) on the basis ofD(3), and so on for future iterations.

Samples

...

...

Datasets

Incremental
Classifier

Data
Stream

Older samples More recent samples

D(3)D(2) D(k)D(1)

M(k)M(3)M(1) M(2)

Figure 2.3 Illustration of the incremental learning process.

Below, we summarize some single classifiers capable of incremental learning:

• Learning vector quantization (LVQ): a simple and successful online learning algorithm

also originating from the neural network literature [70];

• Naive Bayes Classifier: a very suitable method for updating an existing classifier, since

the sample frequencies required for calculating the prior probabilities can simply be in-

creased as new examples arrive;

• Nearest Neighbor: a classifier that is both intuitive and accurate. The training set can be

built by storing each labeled samplex as it arrives;

• Neural Networks: while generally suffering from catastrophic forgetting [93], a particu-

lar neural network family is capable of incremental learning: ARTMAPs [13, 16, 15];

• Decision Tree: a classical batch classifier that has been modified to accommodate new

data over time. An interesting version can be found in [50];



19

• Support Vector Machine (SVM): a classifier that tries to find agood representation of the

boundary between classes. It has the advantage of being readily suited to incremental

learning tasks. More details about incremental versions ofthe SVM are provided in the

next section.

2.4 Ensemble Learning

An ensemble is a set of classifiers (e.g. decision trees (DT),artificial networks neural (ANN),

support vector machines (SVM), etc.) organized in such a waythat their individual decisions

are combined to obtain the ensemble prediction when a new example is to be classified. The

goal is to combine different classifier decisions to decrease the variance and the error among

single solutions obtained by training from a datasetD.

Ensembles of Classifiers (EoC) have become very popular, as they often outperform single

models. Consequently, the literature on EoC has grown extensively with the objective of un-

derstanding them better and improving their results [67, 99, 36, 28, 125, 96, 69, 73, 122, 9, 116,

110, 54]. Because of this interest, EoC are now widely applied in diverse pattern recognition

applications.

The construction of an EoC involves the design of classifier members and choosing a fusion

function to combine their decisions. Classifier members canbe designed in different ways [33],

such as the following:

• Manipulating training examples: These methods vary the training samples in order to

generate different datasets for training the ensemble members. Some examples are: Bag-

ging (BootstrapAggregating [5]) and Boosting ([98]).

• Manipulating input features: Methods in this group manipulate the features to obtain

diversity among members. Their goal is to provide a partial view of the training dataset

to each ensemble member, so that they become different from one another. Examples are

the Random Subspace method [46] and the feature subset selection strategies [111].
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• Manipulating output targets: In this strategy, the labels of training samples are manip-

ulated to produce different classifiers. For instance, using the Error Correcting Code

method [34]), a multi-class problem is transformed into a set of binary problems. At

each new iteration, a different binary division of the training dataset is used to train a

new classifier.

Along with these three categories, there are also some methods that manipulate ensemble mem-

bers (i.e. producing heterogeneous ensembles, the membersof which can actually be different

classifiers [97] or represent variations of some aspects of agiven classifier, such as the topology

for neural networks [102] or hyperparameters for SVMs [115], etc).

At the same time, the choice of fusion function depends on what kind of information is obtained

(e.g. labels, probability estimation, etc.) from the individual models. Among the most common

options found in the literature are: majority voting, simple average, sum, product, maximum,

minimum, weighted average, Naive-Bayes combination, Decision Templates (DT), etc. [61,

72, 71]. For more information about combination functions and classical methods for the

creation of ensembles, a comprehensive survey with examples can be found in [71].

In addition, different combination architectures can be defined, according to classifier arrange-

ment. There are several related topologies or structures inthe literature, such as conditional,

serial, parallel, etc. Lam [74] proposed a classification ofthese topologies as follows:

• Conditional: This topology is based on confidence level, and it works in two ways. A

base structure is used to measure the confidence level. If there is a rejection, or if the

classification is made with a low level of confidence, a secondary structure is used which

is more specialized in the particular problem. This secondary structure, which is usually

more complex than the first, is only used for more difficult patterns.

• Serial: The classifiers are arranged in series. Each classifier produces a reduced set of

possible classes or values that are used by posterior classifiers.
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• Parallel: This topology consists of a set of classifiers consulted in parallel. First, an EoC

operates in parallel to produce classifications of a pattern, and then their decisions are

combined by a fusion function.

• Multistage: In this topology, the classifiers are arranged in differentstages, such as hybrid

combinations of parallel-serial or serial-parallel architectures.

In the same way, inspired by the success of the conventional EoC methods introduced above,

which are traditionally applied over a single dataset, similar techniques have been proposed

to perform incremental learning. Based on the original idea, EoC methods for incremental

learning also generate and combine sets of classifiers. However, the creation of base classifiers

is slightly different, i.e. rather than fixed datasets, now new datachunks can arrive over time.

A comprehensive survey on the various ensemble techniques for dynamic environments is

presented in Kuncheva [70]. Based on that study and [31], thenext two sections present a com-

pilation of the proposed strategies found in the literaturein two groups: dynamic combiners

and incremental ensemble approaches.

2.4.1 Dynamic Combiners

Dynamic combiners train ensemble members in advance and then changes (i.e. concept drifts)

are tracked by updating the combination rule with respect tonew data. Therefore, the adapta-

tion is performed only at the decision fusion level, since existing classifiers are never retrained.

Methods in this group are commonly called "horse racing" algorithms. We outline some of

these algorithms below:

a. Weighted Majority: This algorithm is composed of four steps [70]: 1 - Initialize all

weights{uj}Lj=1 = 1, assigning to each base classifier a classifier ensembleC. 2 - For

each new training samplex, compute the support for each class as the sum of the weights

of all classifiers that suggest its respective class labels for x. Label asx the class with

the largest support. 3 - Check the true label ofx and update the weights of all experts
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with an incorrect prediction asui = βui, whereβ ∈ [0, 1] is a user predefined parameter.

4 - Continue from Step 2.

b. Hedgeβ: The same updating rule as in the Weighted Majority algorithm is employed.

However, instead of taking decisions based on the weighted majority, this method uses

the prediction from a selected classifier as the ensemble decision. The selection process

is based on a probability distribution defined by the normalized weights.

c. Winnow: This method is similar to the Weighted Majority algorithm,but has a different

updating rule. In this algorithm, the weights are recomputed only if the ensemble pro-

vides an incorrect prediction for the current inputx. In addition, the weightu of each

classifier is updated, as follows: If the correct label forx is obtained by a given classifier,

its weight is increased, becominguj = βuj (promotion step), otherwise it is decreased,

becominguj = uj/β (demotion step). In this way, base classifiers are promoted or

punished according to the ensemble errors.

d. Mixture of Experts: Unlike the previous dynamic combiner methods, this strategy repre-

sents a special case in which the fusion decision rule and a selected classifier are updated

from each new example. Therefore, it is important to note that the base classifiers must

support incremental learning.

Although the dynamic combiner methods are attractive from an implementation point of view,

the main problem with such an approach is their failure to adapt to new data at the base classifier

level, since they must be trained in advance. This is a disadvantage, because it may compromise

the performance of the whole system when exposed to an environment where no adequate

classifier has been previously trained.

2.4.2 Incremental Ensemble

Unlike dynamic combiners, the Incremental Ensemble methods are flexible, since they consider

the updating of ensemble size, member knowledge, and a combination rule. The key here is
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how to assign the data to subsets in order to train the base classifiers. This decision also

determines how new examples are learned by the ensemble. Basically, they can be categorized

into three groups [70]:

a. Updated training data: The methods in this group use fresh data to make online updates

of the ensemble members, where the combination rule may or may not change.

• Reusing data points: As described by Oza [86], an online bagging algorithm is used

to converge to batch bagging as the number of training examples and the number of

classifiers tend to infinity. The training samples for the classifiers in the ensemble

are created incrementally. The base classifiers are trainedusing online classifier

models.

• Filtering: Training sets are formed for the consecutive classifiers asthe data flows

through the system. The basic idea is to build the ensemble members progressively

using portions of a training set. Examples of this kind of approach are variants of

the traditional Boosting method [98], e.g. in [82] or the Pasting-small-votes [7]

method.

• Using data blocks or chunks: The ensemble is updated using batch mode training

on a "chunk" of data. That chunk can be treated as a single itemof data, because

the ensemble is trained on the most recent block, on a set of past blocks, or on the

whole set of blocks.

b. Updating ensemble members: The classifiers in the incremental ensemble can be up-

dated online or retrained in batch mode when blocks of data are available.

c. Structural changes to the ensemble This strategy creates an individual classifier from

each new data chunk available. Then, whenever a change in theenvironment is detected,

they are re-evaluated and the worst or oldest classifier is replaced by a new classifier

trained on the most recent data. A general overview of this approach is depicted in
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Figure 2.4. The idea here is to divide data streams into chunks of data for learning.

For each chunk of data, a new base classifier is trained and combined with preceding

ones for future predictions. This scheme is also called "block evolution" in [41]. The

decision’s fusion of classifiers is usually realized by weighted voting, where the weights

are computed from the most recent data. Figure 2.4 depicts the key idea and the variants

that can be suggested naturally based on this idea.

Fusion

Samples

Stream
Data

...

...Classifiers

Datasets

Older samples More recent samples

D(k)

M(k)M(3)

D(3)

M(1)

D(1)

M(2)

D(2)

Figure 2.4 Illustration of the incremental learning process based on ensemble learning.

Despite this categorization of the approaches, it is important to note that combinations between

them are possible. In order to provide a better overview of the approaches and related works

that we have cited in this chapter, we summarize this information in Table 2.1.

In this table, we can see the base classifier, the type of data change studied when learning

over time, and the approach employed. We provide more details on these aspects and works

in section 2.7. We now turn our focus to the base classifier employed in this paper, which is

described in the next section.
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Table 2.1 Compilation of some related works reported in the literature by
outlining the base classifiers, the type of concept drift involved, and

approach adopted.

Related works Base classifier Drift Type Approach applied
Schlimmer and Granger [100] Rule-based learning Real Instance selection
Widmer and Kubat [121] Rule-based learning Real Instance selection
Maloof and Michalski [78] Rule-based learning Both Instance selection
Klinkenberg and Joachims [62] Support Vector Machine Real Instance selection
Klinkenberg and Rüping [65] Support Vector Machine Real Instance weighting
Syed et al. [109, 108] Support Vector Machine (SVM) Population Incremental classifier
Ruping Androutsopoulos et al. [2] Naïve Bayes (NB) Population Instance selection
Street and Kim [106] Decision Trees (DT) Both Ensemble learning
Hulten et al. [50] Decision Tree Real Incremental classifier
Kolter and Maloof [68] Decision Tree, Naïve Bayes Real Ensemble learning
Stanley [105] Decision Trees Real Ensemble learning
Wang et al. [119] Decision Trees, Naïve Bayes Both Ensemble learning
Delany et al. [31] Instance-based (K-NN) Population Instance selection
Wang et al. [120] Decision Tree Real Incremental classifier
Cohen et al. [26] Decision Tree Population Incremental classifier
Tsymbal et al. [112] Decision Trees Population Ensemble learning
Mohammed et al. [81] Multi-Layer Perceptron (MLP) Population Ensemble learning
Muhlbaier and Polikar [82] MLP, NB, SVM Real Ensemble learning
Parikh and Polikar [88] Multi-Layer Perceptron Population Ensemble learning
Tsymbal et al. [113] Decision Trees Both Ensemble learning

2.5 Support Vector Machines

The SVM classifier is a machine learning approach based on thestructural risk theory intro-

duced by Vapnik in [117]. In particular, an SVM classifier is capable of finding the optimal

hyperplane that separates two classes. This optimal hyperplane is a linear decision bound-

ary separating the two classes and leaving the largest possible margin between the samples of

the two classes. Unlike most learning algorithms based on empirical risk, the SVM does not

depend on probability estimation. This characteristic makes it more robust against the well-

knowncurse of dimensionality, mainly for small datasets, since classification success does not

depend on the dimensions of the input space. Because of this,it can be very promising for

incremental learning situations, and so we employ it here.
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In particular, the training of an SVM classifier can be summarized as follows. Consider a set

of labeled training samples represented byD=(x1, y1), . . . , (xn, yn), wherexi ∈ ℜd denotes

a d-dimensional vector in a space, andyi ∈ {−1, +1} is the label associated with it. The

SVM training process, which produces a linear decision boundary (optimal hyperplane) that

separates the two classes (-1 and +1), can be formulated by minimizing the training error:

min 1
2
‖ w ‖2 +C

∑n

i=1 ξi,

subject toyi((w
T
xi) + b) ≥ 1− ξi, ξi ≥ 0, i=1,. . . ,n

(2.1)

while maximizing the margin separating the samples of the two classes.w is a weight vector

orthogonal to the optimal hyperplane,b is the bias term,C is a tradeoff parameter between

error and margin, andξi is a non negative slack variable forxi. The optimization problem in

Equation 2.1 is usually solved by obtaining the Lagrange dual, which can be reformulated as:

max 1
2

∑n

i αi − 1
2

∑

i,j αiαjyiyjxixj ,

subject to0 ≤ αi ≤ C,
∑n

i αiyi = 0
(2.2)

where(αi)i∈n are Lagrangian multipliers computed during the optimization for each training

sample. This process selects a fractionl of training samples withαi > 0. These samples

are called support vectors and are used to define the decisionboundary. In extreme cases, the

number of support vectors will be the same as the number of samples contained in the training

set. As a result, thew vector can be denoted as
∑n

i αiyixi. Figure 2.5 illustrates the general

idea of the decision boundary computed by the SVM, where there are two classes (circles

and squares) separated by an optimal hyperplane. The training samples that were selected as

support vectors are located under and between the dashed lines (margin).

However, this SVM formulation only works for linearly separable classes, and, since real-world

classification problems are almost never solved with a linear classifier, an extension is needed

for nonlinear decision surfaces. To solve this problem, thedot products(xi.xj) in the linear

algorithm are replaced by a nonlinear kernel functionK(.), whereK(xi,xj) = Φ(xi).Φ(xj),
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wT Φ(x) + b = 1
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wT Φ(x) + b = 0

ξi
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Figure 2.5 Illustration of SVM optimal hyperplane separating two classes.

andΦ is a mapping functionΦ : ℜd 7→ H. Such a replacement constitutes the so-called

"kernel trick" [10]. In order to work, the kernel functionK(xi,xj) must satisfy the Mercer

condition [117]. The kernel trick enables the linear algorithm to map the data from the original

input spaceℜd to some different spaceH (possibly infinitely dimensional), called the feature

space. In this space, nonlinear SVMs can be generated, sincelinear operations in that space are

equivalent to nonlinear operations in the input space. The most common kernels used for this

task and their parameters (γ, r, u andτ ) are listed in Table 2.2. The decision function derived

by the SVM classifier for a test samplex and training samplesxi can be computed as follows,

for a two-class problem:

sign(f(x)) with f(x) =
l

∑

i

αiyiK(xi,x) + b (2.3)

Table 2.2 Compilation of the most common kernels

Kernel Inner Product Kernel
Linear K(xi,xj) = x

T
i xj

Polynomial K(xi,xj) = (γx
T
i xj + r)u, u > 0

Radial Basis Function (RBF)K(xi,xj) = exp(−γ‖xi − xj‖2),γ > 0
Sigmoid K(xi,xj) = tanh(γx

T
i xj + τ)
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In the same way that this extension deals with nonlinear problems, the primary SVM formu-

lation requires additional modification to solve multiclass problems (c > 2). There are two

approaches for handling this:

• One-Against-One (OAO): This strategy arranges pairs of classifiers into separate classes,

and is also called a pairwise scheme, where the total number of classifiers isc(c− 1)/2.

Given a test sample, the classification result is obtained bycomparing the pairs and

assigning the class with the maximum number of votes to it.

• One-Against-All (OAA): In contrast, the one-against-all strategy yields one classifier for

each classc that separates that class from all the other classes. The final decision is made

by the winner-takes-all method, in which the classifier withthe highest output function

designates the class.

In this work, we use the OAO strategy, since it has been demonstrated to be faster to train

and uses fewer support vectors than the OAA approach [47]. Overall, the SVM is a powerful

classifier with strong theoretical foundations and good generalization performance. However,

even though it occurs in most machine learning algorithms, training it requires fine-tuning of its

hyperparameter set (i.e. kernel parameters and the regularization parameterC). For instance,C

is a penalty parameter of the error term, e.g. a high value punishes the errors too much, and the

SVMs can either overfit the training data or underfit them. Kernel parameters that are not well

tuned can also lead to underfitting or overfitting of the data.In our case of interest, if the RBF

kernel parameterγ is improperly set, the SVMs easily over- or underfit the training data, while

a badC setting can cause an explosion in the number of support vectors identified, thereby

increasing the complexity of the classifiers obtained. So, tuning the SVM hyperparameters

controls the classifier’s power of generalization. The problem now is to find their best values,

which is a non trivial task (the so-called “model selection"problem). In the next chapter, we

explain this problem and relate it to dynamic optimization problems.
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2.6 Incremental Support Vector Machines

The SVM classifier has robust theoretical fundamentals, andoften demonstrates good empir-

ical results in the literature. Unfortunately, its training process is very time-consuming when

dealing with large or noisy datasets. This is mainly becausethe original SVM formulation

involves solving a quadratic programming problem, which requires that all training samples be

loaded into computer memory at once. For this reason, many incremental support vector meth-

ods (ISVM) have been proposed to provide options for updating an existing model that will

minimize the computational cost in terms of memory and processing time. Without ISVMs,

the application of SVMs could be unviable in these situations. Here, we have grouped the most

incremental SVM approaches found in the literature into twocategories, according to the way

in which they conduct the incremental process:

• Manipulating Sample Sets (MSS):These ISVM methods update a classifier by merging

new data, old support vectors, and, optionally, additionalsamples considered relevant in

an iterative training procedure. Other non important samples are discarded after training,

or used for recursively testing the models generated [108, 109, 80, 123, 35, 1]. Other

approaches even filter samples before retraining the model [91].

• Preserving Karush-Kuhn-Tucker Conditions (PKC):These ISVM training algorithms at-

tempt to incrementally approximate an optimal decision boundary by adding a new sam-

ple to the solution and "adiabatically" updating Lagrange coefficients (αi), and retaining

the Karush-Kuhn-Tucker conditions on all previously seen data [32, 103]. A sample-

discarding procedure is implemented based on a kind of leave-one-out estimate of gener-

alization error on the whole training set. Despite incremental training, the leave-one-out

procedure makes these methods computationally expensive.

We have compiled some related works in Table 2.3. Most of the ISVM methods were in-

troduced in order to reduce training time over a dataset, andso no special techniques, like
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Sequential Minimal Optimization (SMO) or chunking-based optimization, were used in the

process.

Table 2.3 Compilation of incremental SVM methods

Ref. Grp. Description Requirements/data feeding (DFe)/Hyper-parameters
selection (HS)/general comments

[108] MSS Current support vectors are merged with new data for classifier
updating.

No. / DFe: Chunks. /HS: No.

[80] MSS Based on condensed nearest neighbor classification technique,
it exchanges samples between two extra sets w.r.t. their cor-
rectness and distance to separating hyperplane. The process
stops whether a user specified level of accuracy is reached ona
extra test set or one of the sets become exhausted.

Validation set, pre-setting of accuracy level intended,
number of nearest neighbors, multiple incremental ses-
sions. /DFe: One training set, i.e. no chunks. /HS:
No.

[123] MSS This approach uses three sample sets during the process, sam-
ples are classified, selected and exchanged between extra sets.

α, β, γ, ∆d, δ controls storage and performance rates;
multiple incremental sessions. /DFe: Chunks. /HS: No

[11] MSS The idea is to train an ISVM from samples that represent ver-
tices from convex hulls for each class. It is impractical, since
the complexity of convex hull computation can be huge de-
pending on the input space dimension.

Impractical, the complexity of convex hull computation
can be huge w.r.t. sample space dimension. No experi-
ments were performed. /DFe: It could be from chunks.
/ HS: No.

[17] PKC It tries to retain the Karush-Kuhn-Tucker (KKT) conditionson
all previously seen data, while “adiabatically" adds a new sam-
ple to the solution. Leave-one-out is performed for “unlearn-
ing" samples.

Leave-one-out estimation for discarding samples. /DFe:
One training set, i.e. no chunks. /HS: No. No experi-
ments were performed.

[35] MSS Four strategies are compared in this work. Error-driven tech-
nique, which keeps only the misclassified data. Fixed-partition
that is similar to [108]. Exceeding-margin that keeps new sam-
ples that exceed the margin defined by the current SVM model.
And finally, a combination of exceeding-margin+errors-driven
technique.

DFe: Chunks /HS: Cross-validation to set parameters
over the first chunk, but used values were not mentioned.
/ Reported results indicate that the fixed partition [108]
overcomes the other strategies.

[94] MSS This method attempts to re-learn only a neighborhood from
new data and update weights of old data.

Two extra parameters: number of neighbors and a well
suited error estimate. Multiple incremental sessions.
DFe: One dataset, no chunks.HS: No.

[95] MSS This method works similarly to [108]. However, it changes the
SVM formula to compute the loss function by adding a weight
to punish errors on previous support vectors.

Extra parameter to weight previous support vectors.
DFe: Chunks /HS: No.

[32] PKC The authors expand the work introduced in [17] to enable
hyper-parameters updating during incremental learning ses-
sions.

Leave-one-out estimation for discarding samples.DFe:
One training set, i.e. no chunks. /HS: Yes, through
gradient-based search. / One database is used (PIMA
from UCI), no performance results were reported.

[124] MSS The idea is to reduce SVM training time by filtering a large
training dataset and training a SVM only from filtered samples.
In order to achieve this, the authors use a clustering algorithm.

There are extra parameters for the clustering algorithm
and a linear SVM is used (i.e. no kernel parameters, just
linear decision function) /DFe: Chunks /HS: No.

[101] MSS The authors propose a modification to adapt the SMO algo-
rithm for online learning.

The approach has serious limitations, since it works only
for binary features and linear SVMs. Besides, often
with little degradations of performance can be observed.
DFe: Chunks. /HS: No.

[1] MSS It pre-extracts support vectors candidates from new data tore-
duce computational training time. The pre-extraction is done
based on a relative distance between samples to optimal hyper-
plane and a correctness rate of test over all previous data.

Relative distance, multiple incremental sessions for one
chunk. /DFe: Chunks. /HS: No.

[91] MSS Like in [108], the previous SVs replaces all historical samples
in the retraining process. In contrast, new chunks are “filtered"
and only some samples are considered for training. The impor-
tance of a sample is measured w.r.t. an adaptive distance to the
hyperplane.

No mention on how to implement, set, or measure such a
distance adaptively. Some experiments with user graph-
ics. DFe: Chunks. /HS: No.

[103] PKC As in [17], this method also works based on updates at the level
of samples coefficients.

While updating hyper-parameters, previous data must be
used. /DFe: One training set, i.e. no chunks. /HS: Yes,
gradient-based search.
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The term “incremental" is used to describe the process of building models incrementally based

on recursive procedures (training and testing) applied to aselection of samples from different

subsets and the large original training set. Their goal is togenerate a final model more quickly

than by solving a larger quadratic optimization problem. Also, it is important to note that SVM

hyperparameters are usually set beforehand, without usingmore sophisticated methods, such

as evolutionary computation, for example.

In addition, the termsexactor approximateSVM usually appear in the literature in connection

with ISVM methods. These terms are specifically related to the resolution of the quadratic

problem for building the final SVM classifier. If, for example, the final SVM solutions are

found using all the training samples during the resolution of the quadratic optimization prob-

lem, the SVM is described as exact. The chunking decomposition method and SMO are exam-

ples of other methods that provide an exact solution.

By contrast, when the algorithm considers finding the SVM solution by employing one sample

at a time (single pass), it is called an approximate ISVM. This is because they do not check

other samples, and so the final solution is not optimal. Taking this into account, we suggest

in our proposed method a modified version of Syed et al.’s method [108, 109], which we

will introduce in section 5.1.2.1. In addition, the SVM implementation used in this thesis

already provides mechanisms to accelerate SVM training through SMO. Such a technique is

very efficient and demands less computational effort than traditional quadratic programming

solvers, as shown in [92].

2.7 Discussion

This chapter surveyed the main approaches for developing mechanisms to learn from impre-

cise environments. From this literature review, we note that the former methods were proposed

based on the instance selection and weighting approaches. In recent years, though, more so-

phisticated methods have been developed using incrementalclassifier and ensemble learning

approaches. Furthermore, when dealing with real-drift scenarios, most works use only lin-

early separable synthetic classification problems (e.g. SEA concepts, rotating hyperplane, etc.)
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[68, 119, 120]. By contrast, population drifts have been studied in more realistic scenarios, i.e.

with real-world data [26, 112, 88].

Most importantly, we have seen that the main incremental learning approaches introduced in

the literature are based on different techniques: (1) single incremental learning classifiers; or

(2) ensemble of classifiers. We have noted that some authors have adapted traditional machine

learning algorithms when using single classifiers, e.g. DTs[50] and SVMs [109], to support

incremental learning. In the former approach, the methods update a learner from blocks of

data, while the second approach usually uses the serial combination of several individual clas-

sifiers. In this thesis, in order to make our system more robust and capable of achieving high

performances, we adopt an ensemble of incremental learnersin a parallel structure that com-

bines optimized members over time. Our system also employs the concept of relevant samples,

inspired by the idea underlying the instance selection approach.

In addition, the choice of a base learner for a classificationsystem is very important. Through

this literature review, for example, it can be seen that several incremental versions of classical

classifiers have been implemented. So, in order to select a specific classifier, characteristics

such as power of generalization, computational complexity, and storage space required by the

learner must be analyzed. LVQ and Nearest Neighbors may be easily employed as incremental

algorithms for this purpose. However, they demand a great deal of storage space if problems

with large databases are considered. The Naive Bayes classifier is very suitable for updating

an existing classifier as it learns quickly, but it usually produces more generalization errors.

By contrast, although the SVM classifier is relatively more computationally complex, it is

asymptotically much better than the Naive Bayes and other classifiers. As for neural networks

with incremental capabilities, they often have several parameters to fit and are very sensitive

to the order in which examples are presented. For these reasons, we have selected the SVM

classifier as part of the core of the system proposed in this thesis.

From our literature review, it can also be noted that, no matter what the incremental learning

approach, no consideration has been given to tuning the system parameters over time. In other
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words, system updating is always performed based on the samefixed parameter values, or

at the classifier combination levels in the ensemble approaches. Thus, updating classifiers

with the adaptation of their parameters has not yet been investigated. Moreover, recent results

indicate that using well-tuned incremental learners couldachieve better performances than just

moderate ones [88].

We can see from the above that the incremental updating of existing classifiers without com-

promising their performances remains a major challenge. This is because it can be affected

by possible variations in a problem’s data distributions (i.e. population drifts), which disturb

the process of selection of system parameters, and hence theestimation of decision boundaries

at different times. This occurs mainly when classification problems involve complex decision

boundaries or overlapping between classes.

In order to overcome this challenge, an incremental learning system must be able to accommo-

date new data at no detriment to knowledge already learned [93], but it must also better adapt its

parameters. The approach we propose for adaptive incremental learning takes this into account

by regarding incremental learning as a dynamic optimization process. In particular, it employs

knowledge acquired from previous optimization processes to decrease the computational cost

of frequent reoptimization.

From an optimization point of view, our assumption is that the natural data changes mentioned

above are sources of uncertainty reflected in dynamic changes to the parameter search space.

Such uncertainties become even more intense when the searchfor optimum parameter values

must be performed over time. In the literature, dynamic optimization problems are categorized

into three types: (I) the location of the optimum changes over time and the amount of shift is

quantified by a severity parameter; (II) the location remains fixed, but the value of the objective

function changes; and (III) both the location and the value change [83]. In this thesis, we

demonstrate empirically that the reoptimization of classifiers over time can be seen as a type

III problem.
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Moreover, from the analysis of SVM ensembles presented in [116], which shows that the per-

formances of a single SVM classifier can be improved over small datasets by combining "het-

erogeneous" SVMs in terms of parameters, the proposed approach is implemented for evolving

and combining a population of optimum solutions. Likewise,we explore the use of multiple

classifiers to try to achieve better performances than with asingle incremental learner.

However, instead of picking up parameter values from an arbitrary grid of options, as in [116],

the proposed method explores the self-organization power of the swarm intelligence theory and

dynamic optimization techniques. In this way, the proposedapproach is able to dynamically

move a population of solutions towards optimum regions in the system parameter search space.

Finally, the aim is to combine an optimized population of hypotheses that are well placed over

the search space and that can even be multimodal, and so become a more robust system than

when only single models are used. In the next section, we introduce the first steps in the

development of the system, which are to study the SVM model selection problem performed

over time as a dynamic optimization problem, and to propose asolution to it.



CHAPTER 3

A PSO-BASED FRAMEWORK FOR THE DYNAMIC SVM MODEL SELECTION

(DMS)

In the previous chapter we outlined that the Support Vector Machine (SVM) is a very powerful

classifier. However, we also mentioned that its efficiency inpractice relies on the optimal

selection of hyper-parameters. The search process for optimal values for its hyper-parameters

is the so-called SVM model selection problem.

In this chapter we propose a strategy to select optimal SVM models in a dynamic fashion in

order to address this problem when knowledge about the environment is updated with new

observations and previously parameterized models need to be re-evaluated, and in some cases

discarded in favor of revised models. This strategy combines the power of swarm intelligence

theory with the conventional grid search method in order to progressively identify and sort out

potential solutions using dynamically updated training datasets.

Despite of some search methods have practical implementations, e.g. gradient descent, they

usually are limited by difficulties related to the model selection process. For example, the

gradient descent methods require a differentiable objective function with respect to the hyper-

parameters and the kernel. In this case, the kernel is also required to be differentiable. Like-

wise, multiple local minima in objective functions also represent a hard challenge for gradient

descent based methods. To tackle this, the use of grid-search and evolutionary techniques are

interesting alternatives. However, the grid-search method needs a good discretization of the

search space in fixed values, which is crucial to reach high performances. Thus, the determi-

nation of objective function to be employed, the presence oflocal minima in the search space,

and the computational time required for model selection task have been considered the main

challenges in the field.

Additionally to these difficulties, the availability of updates on the knowledge related to the

pattern recognition problem to be solved represents a challenge too. These updates typically
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take the form of data arriving in batches which become available for updating the classification

system. In fact, the quality and dynamics of training data can affect the general model selection

process in different ways. For example, if knowledge on the problem is limited, or the data are

noisy or are arriving in batches over time, the model selection task and its performance can

progressively degrade. In order to avoid the negative effects of uncertainties associated with

either the training data or the updates, we believe that an efficient option is to allow on-line

re-estimation of the current model’s fitness and if requiredto allow the production of a new

classification model more suitable to both historical and new data.

This is important issue because, if the goal is to obtain a performing single classifier, the

model selection process must be able to select dynamically optimal hyper-parameters and train

new models from new samples added to existing batches. In this chapter, we first study the

general SVM model selection task as a dynamic optimization problem in a gradual learning

context, where solution revisions are required online to either improve existing models or re-

adapted hyper-parameters to train new classifiers from incoming data. These considerations

are especially pertinent in applications for which the acquisition of labeled data is expensive,

e.g. cancer diagnosis, signature verification, etc., in which case the data available may initially

not be available in sufficient quantity to perform an efficient model selection.

However, more data may become available over time, and new models can gradually be gener-

ated to improve performance. In contrast, as previously mentioned, not only is the optimality

of the models estimated a relevant factor, but also the computational time spent to search for

their parameter values. Most of related work in the literature has considered cases involving

only a fixed amount of data in systems aimed at producing a single best solution. In these

approaches whenever the training set is updated with more samples, the entire search process

must be restarted from scratch.

The proposed method is a Particle Swarm Optimization (PSO) based framework to select op-

timal models in a dynamic fashion over incoming data. The general concept underlying this

approach is to treat the SVM model selection process as a dynamic optimization problem,
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which can have multiple solutions, since its optimal hyper-parameter values can shift or not

over the search space depending on the data available on the classification problem at a given

instant. This means that the proposed method can also be useful for real-world applications

requiring the generation of new classifiers dynamically in aserial way, e.g. those involving

streaming data. The key idea is to obtain solutions dynamically over training datasets via three

levels: re-evaluations of previous solutions, dynamic optimization processes, or even by keep-

ing the previous best solution found so far. In this way, by shifting among these three levels,

the method is able to provide systematically adapted solutions. We implement the proposed

method based on three main principles: change detection, adapted grid-search, and swarm

intelligence theory (for self-organization capability),where the goal is to solve the model se-

lection by overcoming the constraints of the methods described above. In addition, we try to

answer the following questions:

• Is PSO really efficient to select optimal SVM models?

• Can the proposed method be more efficient than the traditional grid-search or even a PSO

based strategy?

• Is it possible to obtain satisfactory results by spending less computational time than is

required for the application of PSO for each set of data?

• What is the impact in terms of classification errors, model complexities, and computa-

tional time for the most promising strategies?

This chapter is organized as follows. In section 3.1 we explain the relation between the model

selection problem and dynamic optimization problems. Our proposed method is introduced

in section 3.2. Finally, the experimental protocol and results are described in section 3.3.

Discussions and conclusions are presented in section 3.4.
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3.1 SVM Model Selection as a Dynamic Optimization Problem

In order to generate high performing SVM classifiers capableof dealing with continuously

updated training data an efficient model selection method isrequired. The model selection task

can be divided into two main phases: the searching phase and the final training/test phase.

The searching phase involves solving an optimization problem whose goal is to find optimal

values for the SVM hyper-parameters considered in this paper (C andγ) with respect to some

preference, or selection criterion. In our case this criterion is expressed as an objective function

F evaluated over a training datasetD, in terms of the cross-validation errorǫ. So, our model

parameter selection problem takes the following formmin(ǫ((C, γ),D)), or for simplification

purposes here,min(ǫ(s,D)). The final training/test phase in concerned with the production and

evaluation on a test set of the final SVM model created based onthe optimal hyper-parameter

set found so far in the searching phase. On the other hand, thefinal training and test phase con-

cerns the production and evaluation of the final SVM modelM created based on the optimal

hyper-parameter set found so far in the searching phase. In other words, the common process

related to these two phases can be summarized in five steps:

a. Collect training data;

b. Start the search for solutions;

c. Find the hyper-parameters that perform best;

d. Train the final model with the best hyper-parameters;

e. Assess the performance of the final model using the test set.

In Table 3.1 we summarize examples of SVM model selection methods found in the literature

organized according to the type of kernel, search methods, and objective functions employed.

We note that the RBF kernel has been investigated the most, perhaps due to the fact that the

kernel matrix using sigmoid function may not be positive defined. Besides, even though the
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polynomial kernel may be an attractive alternative, but numerical difficulties tend to arise if a

high degree is used, for example, a power of some minor value that 1 tends to 0 and of a major

one that tends to infinity. Furthermore, the RBF kernel has often achieved a superior power of

generalization with lower complexity than the polynomial kernel [115]. Because of this, the

RBF kernel is considered in this study.

Table 3.1 Compilation of some related works on SVM model
hyper-parameters selection in terms of the type of kernel used, the search

method, and the objective function

Ref. Kernel1 Search method Objective function
[35] RBF Grid-search (GS) ν-Cross-validation
[20] RBF Gradient descent (GD) Radius-margin, Span

bounds, Leave-one-out
[18, 47] RBF Grid-search (GS) ν-Cross-validation error

(CV)
[22] RBF Genetic algorithm (GA) Radius-margin bound
[25] RBF Genetic algorithm (GA) ν-Cross-validation error

(CV)
[3] RBF Gradient descent (GD) Hold out error, radius-

margin, Generalized Ap-
proximate CV error (GACV)

[32] RBF Gradient descent (GD) Leave-one-out (LOO), span
bound

[116] RBF,POL Grid-search (GS) ν-Cross-validation
[103] POL Gradient descent (GD) Generalization error estima-

tion bound
[107] RBF Multi-objective GA

(MOGA)
Modified radius-margin
bounds

[29] RBF Particle Swarm Optimiza-
tion (PSO), Grid-search
(GS)

Hold out error,ξα-estimator

[49] RBF Uniform design (UD),
Grid-search (GS)

ν-Cross-validation

[52] RBF Particle swarm optimiza-
tion (PSO)

False Acceptance (FA)

aRBF: Radial Basis Function kernel whose hyper-parameter isγ, POL: Polynomial kernel which hyper-
parameters are the degreeu and coefficientr. Kernel hyper-parameters and the regularization parameter C are
optimized simultaneously.
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Most of effort associated with the approaches listed in Table 3.1 concentrated on solving the

complex SVM model selection problem from one static training dataset available at timek. In

this case, it should be convenient to use perfect, i.e. noise-free, data and in a fair amount in

order to reach high performances.

By contrast, data from real-world applications are usuallyfar from perfect, which gives the

model selection process itself the potential for many typesof uncertainty. In general, uncer-

tainty is a multifaceted concept which usually involves vagueness, incompleteness, missing

values, or inconsistency. Here, we assert that some uncertainties related to the machine learn-

ing area, such as missing features, random noise, or data insufficiency, generate uncertainties

that can disturb the optimization process responsible for model selection. This is because un-

certainties may produce some dynamism in the objective function, and so it is important to

understand SVM model selection as a dynamic optimization problem.

Dynamic optimization problems are complex in which the optimal solution can change over-

time in different ways [53]. The changes can result from variations in the objective function,

which implies in fitness dynamism. Figure 3.1 depicts a conceptual example of fitness dy-

namism, and its consequences, and shows why dynamic optimization techniques are claimed.

One can see that in a first moment (k), the optimization process approximates some solutions

for a parameterγ.

Then, due to some unexpected change related to the optimization task, e.g. new data, noise,

etc., the objective function changes, and the solutions become outdated and trapped into a local

minimum in the future (e.g. ink +1). This requires that the optimization algorithm be capable

of re-adapting the solutions to new functions. By way of illustration, we depict in Figure 3.2

an overview of the SVM model selection task seen as an optimization process and the possible

uncertainties involved.
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some unexpected change, e.g. new data, noise, etc.,the objective function
changes and the solutions (gray circles) stay trapped in a local minimum,
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To demonstrate this fact, we depict a case study in Figure 3.4regarding themin(ǫ(s,D(k)))

mentioned above for a two-class (I and II) classification problem called P2, which is depicted

in Figure 3.3. More details about the construction of this synthetic classification problem can

be found in the appendix I.
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Figure 3.3 Illustration of the P2 classification problem.

So first, in Figure 3.4(a) we can see an SVM hyper-parameter search space and optimal solu-

tions obtained with a certain number of data samples from a classification problem. Then, the

entire search space was recomputed with the same objective function (five-fold cross-validation

average error), but this time from more data.

The resulting search space is shown in Figure 3.4(b). It can be seen that the search space and the

optimal solutions may actually change depending on the amount of knowledge available about

the problem. This applies to both objective function values, since the new objective values of

previous optimal solutionss∗ have worsened fromǫ = 10% (e.g. s1 ands3) or improved (to

s2, for example), once a new optimal solution emerged, that is,s4 = (6.93,6.23). Through this

example, it is easy to see that the search space and optimal points may change in terms of both

fitness values and positions.
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(a) 40 samples

(b) 922 samples

Figure 3.4 Hyper-parameter search space for P2 problem withdifferent
number of samples.

In order to show the effect that these hyperparameters changes produce in obtaining a final

SVM model, we depict in Figure 3.5, for this same example, theinput spaces and the respective

decision boundaries produced by SVM models trained with different hyperparameters values

and number of samples.
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From these results, we can see that despite ofs2 adequately separates the classes given a certain

knowledge about the problem (Figure 3.5(a)), it is not capable of producing the same satisfatory

results (Figure 3.5(b)) that a new best evaluated solution (i.e. s4) can achieve (Figure 3.5(c)) if

more samples are considered.
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(a) s2 and 40 samples,ǫ = 10%
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(b) s2 and 922 samples,ǫ = 7.81%
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(c) s4 and 922 samples,ǫ = 3.90%

Figure 3.5 Input spaces and resulting decision boundaries produced by
training SVM models with different hyperparameters valuesand number of
samples for the P2 problem. (a) Decision boundaries obtained after training

with the solution s2 and 40 samples. (b) Decision boundaries obtained for
the same optimum solutions2 for 40 samples, but now training over 922
samples. (c) Final result achieved for the best solutions4 regarding 922

samples.
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Moreover, regarding the real-world situations addressed in this paper, the model selection pro-

cess must also be designed to perform over time, i.e. for manydatasets or incoming data. This

is another reason why the SVM model selection problem can be seen as a dynamic optimization

problem, in which solutions (i.e. hyper-parameters) must be checked and selected over time,

since optimal hyper-parameter values can change dynamically depending on the incoming data

at different timesk.

Thus, in addition to the approaches mentioned above which may only partially solve the prob-

lem and in order to attend to real-world applications needs,especially for updating and/or gen-

erating new models, this problem claims for more sophisticated methods capable of adapting

new solutions and saving computational time, rather than for example, starting seach processes

from scratch every time.

3.2 The Proposed Dynamic SVM Model Selection Method (DMS)

The goal of the proposed method is to point out dynamically optimum solutions for sequences

of datasetsD(k) by switching among three levels: 1) use the best solutions
∗(k − 1) found so

far, 2) search for a new solution over an adapted grid composed of a set of solutionsS(k − 1),

or 3) start a dynamic optimization process. In this thesis, each solutions will represent a PSO

particle, which codifies an SVM hyper-parameter set, e.g.(C, γ). The switching among the

levels is governed by change detection mechanisms which monitor novelties in the objective

functionF . Such changes correspond to degradation of performance or no improvement at all

(stability) with respect to new data, which will indicate whether or not the system must act.

An overview of the general concept proposed is depicted in Figure 3.6. First, a population

of solutions (swarm)S(0) is initialized by theoptimization algorithmto search for solutions

for the datasetD(1), after which the optimization process finishes and, a set of optimized

solutionsS(1) is stored for future use. Based on fitness re-estimation or according to some

other criterion related to the problem, the current status of the best solution (dark circle) will

be examined on new data. Following the example, we suppose that the fitness re-estimated

from the previous best solutions∗(1) for the datasetD(2) is still satisfactory, and apply the
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same solution to train a new classifier. However, more data can be available and the goodness

of the best solutions∗(1) may no longer be guaranteed, e.g. between datasetsD(3) andD(4).

To solve this, we suggest performing a fine search over the setof optimized solutionsS(1). We

call this process anadapted grid-search, since it applies solutions already optimized, which

are probably located over a good deal of the search space, andare not guessed values as occurs

in the traditional grid-search.

The advantage is that, in the most of the time, the adapted grid-search can indeed gain in perfor-

mance if compared with traditional grid methods and also save computational time if compared

with full optimization processes. On the other hand, when itis not possible to identify a sat-

isfactory solution even after an adapted grid search, the method starts a dynamic optimization

process, as denoted for the datasetD(7). As a result, a new population of solutions, surely

better adapted to the problem, will be available for the future. We introduce the framework of

the proposed method below.
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Figure 3.6 Overview of the proposed model selection strategy (conceptual
idea). Optimum solutions for a current datasetD(k) are pointed out by

switching among three search strategies: 1) use the best solution s
∗(k − 1)

found so far, 2) search for a new solution over an adapted gridcomposed of
a set of solutionsS(k − 1), or 3) start a dynamic optimization process. The

symbols represent different solutions from a swarm. The best solution
selected for a dataset lies above the dashed line. The white circles in S(0)
denote randomly initialized solutions. Dark and white symbols indicate

solutions from different swarms.
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3.2.1 Framework for the Dynamic Selection of SVM models

As we mentioned previously, the ideal method of creation of an SVM classifier is composed of

two phases: model selection and training/test phases. The first is responsible for searching for

the best SVM hyper-parameters and the second phase uses the best hyper-parameters found to

train and test a final SVM modelM.

In this work, based on the conceptual idea depicted in Figure3.6 and also by concepts of

dynamic optimization problems introduced in section 3.1, we propose a framework for the

dynamic selection of SVM models over time.

In particular, our general framework for the dynamic selection of SVM models is composed of

three main modules: change detection, adapted grid-search, and dynamic particle swarm opti-

mization (DPSO). Figure 3.7 depicts its general idea. In addition, we summarize its working

in Algorithm 1.

Details on each one of these modules are described in the nextsections. Theupgrade_stmand

recall_stmfunctions are respectively responsible for storing and retrieving optimized solutions

from the system’sShort Term Memory(STM).
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Change
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Particle Swarm Optimization
Dynamic Opt. Techniques +

Support Vector Machine
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Figure 3.7 General framework for the dynamic SVM model selection.
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Algorithm 1 Dynamic SVM Model Selection

1: Input: A training set of dataD(k).
2: Output: Optimized SVM classifier.
3: recall_stm(s∗(k − 1),S(k − 1))
4: if there is aS(k − 1) then
5: Check the preceding best solutions

∗(k − 1) regarding the datasetD(k)
6: if Change_Detection(s∗(k − 1),D(k)) then
7: Activate the adapted grid-search module and get solutions

′(k)
8: if Change_Detection(s′(k),D(k)) then
9: Activate the DPSO module

10: end if
11: end if
12: else
13: Activate the DPSO module
14: end if
15: upgrade_stm(s∗(·),S(·))
16: Train the final SVM classifier fromD(k) by using the optimum solution found so far.

3.2.1.1 Change Detection Module

The change detection module controls the intensity of the search process by pointing out how

the solutions are found thereby the levels of the framework.In particular, it is responsible for

simultaneously monitoring the quality of the model selection process and avoiding “unneces-

sary" searching processes.

We implement it by monitoring differences in the objective function values, in this case error

estimationsǫ obtained for a best solutions∗ on the datasetsD(k − 1) andD(k), for example.

We denote this fact asǫ(s∗,D(k − 1)) andǫ(s∗,D(k)), respectively. If the solution found is

not to be satisfactory for the process, then a further searching level is activated. The adequacy

of a solution can be measured in several ways. In this work, aswe are interested in finding

performing solutions, we consider that further searches are needed if the objective function

value computed does not lie in a “stable" region.

The stable region is computed through the maximum expected differenceδmax between the

objective function values at the 90% confidence level using anormal approximation to the

binomial distribution (see Equations 3.1 and 3.2) [26]. In this setting, if there is a degradation
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of performance (ǫ(s∗,D(k−1)) < ǫ(s∗,D(k))) or significant variation in the objective function

(i.e. | ǫ(s∗,D(k − 1)) − ǫ(s∗,D(k)) |≥ δmax), then other levels are activated for additional

searches.

Figure 3.8 depicts an illustration of theδmax stable region idea. In order to make this criterion

more robust when small datasets are used, we combine it with arule related to the compres-

sion capability of the classifier. The compression capability is calculated as the proportion of

support vectors over the number of training samples. If theδmax rule and a minimal compres-

sion required are attained, the situation is characterizedas stable and no further searches are

computed. Otherwise, the model selection process continues by activating the other modules.

δmax = z0.9 ×
√

σ = 1.282×
√

σ (3.1)

Whereσ is computed by, whereW (·) is the dataset size:

σ =
ǫ(s∗,D(k − 1))× (1− ǫ(s∗,D(k − 1)))

W (D(k − 1))
+

ǫ(s∗,D(k))× (1− ǫ(s∗,D(k)))

W (D(k))
(3.2)

So, the change detection module may sometimes denote a trade-off controller between com-

putational time spent and the quality of solutions. For instance, if we ignore this module, then

dynamic re-optimization processes will be always conducted, which can produce indeed good

results but to be unnecessarily time consuming for stable cases.

3.2.1.2 Adapted Grid-Search

The adapted grid search module provides optimum solutions by re-evaluating the knowledge

acquired from previous optimizations performed by the DPSOmodule. This knowledge is

represented by a setS(k−1) of optimized solutions which are stored in theshort term memory

(STM). Usually, this method finds better solutions than the traditional grid-search method.

Unlike the traditional grid-method, which depends on the discretization of values and requires

the evaluation of several combinations (see Figure 3.9 for two hyper-parameters (C andγ)), the
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Figure 3.8 Illustration of the change detection mechanism.In this case, as
the new fitness is situated outside the expected region, a newoptimization is

carried out in order to find a new better solution.

adapted grid-search module reduces the number of trials by focusing the search in an optimal

region. As a result, this module can save a considerable computational time.

Basically, this module uses the best positions of precedingoptimized solutions as a grid of

new possible candidate solutions to be evaluated over the current dataD(k). At the end of

the process, the best candidate is selected. Although we employ this implementation, we can

suggest other modifications, such as moving the particles byusing a complete iteration of PSO,

for example. Such a process seems interesting, but costs more in terms of processing time than

simply re-evaluating the best particles’ positions, whichin most of cases may be enough.

Nevertheless, it is important to note that the module’s results are related to the quality of the

previous optimizations. Therefore, it is efficient when thecurrent population of solutions is

positioned on optimal regions. Otherwise, it may produce sub-optimum solutions that will be

not satisfactory for final learning purposes. In light of this, we apply the change detection a

second time in order to ensure the quality of the solution obtained at the end of this process,

as indicated in the framework in Figure 3.7. If the current solution is still not considered

satisfactory, the dynamic optimization module is activated.



51

H
yp

er
−

pa
ra

m
et

er
 C

Hyper−parameter γ

Traditional Grid

H
yp

er
−

pa
ra

m
et

er
 C

Hyper−parameter γ

Adapted Grid

Optimum region
Evaluated solutions

S(k)

s
∗(k)

Figure 3.9 The traditional grid must try a higher number of combinations
than the adapted grid, which profits from the already optimized solutions

S(k) provided by DPSO.s∗(k) denotes the best solution.

3.2.1.3 Dynamic Particle Swarm Optimization - DPSO

The DPSO module is responsible for finding new solutions by means of re-optimization pro-

cesses. We implement it based on the Particle Swarm Optimization (PSO) algorithm combined

with dynamic optimization techniques.

The Particle Swarm Optimization (PSO) method was firstly introduced by Kennedy and Eber-

hart in 1995 [59]. Briefly, it is a population-based optimization technique inspired by the social

behavior of flocks of birds or schools of fishes. It is applied in this work because it has many

advantages that make it very interesting when compared withother population-based opti-

mization techniques, e.g. genetic algorithms (GA). For instance, PSO belongs to the class of

evolutionary algorithms that does not use the “survival of the fittest" concept. It does not utilize

a direct selection function, and so, particles with lower fitness can survive during the optimiza-

tion and potentially visit any point in the search space. Furthermore, the population size usually

employed in PSO gives it another advantage over GA, since thelower population size in PSO

favors this algorithm regarding the computational time cost factor [60]. Nonetheless, two main

additional characteristics give us further motivation forusing it. First, PSO has a continuous

codification, which makes it ideal for the search of optimal SVM hyper-parameters. Second,
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the potential for adaptive control and flexibility (e.g. self-organization and division of labor)

provided by the swarm intelligence makes PSO very interesting to be explored for solving

dynamic optimization problems.

In this section, we simplify the index notation (e.g. for time or datasets) and use only those

needed to understand the PSO technique well. In particular,the standard PSO involves a set

S = {si, ṡi, s
′
i}Pi=1

1 of particles that fly in the search space looking for an optimal point in a

givend-dimensional solution space. Thesi = (s1
i , s

2
i , . . . , s

d
i ) which is a vector that contains

the set of values of the current hypothesis. It represents the current location of the particle in

the solution space, where the number of dimensions is problem dependent. The vectorṡi =

(ṡ1
i , ṡ

2
i , . . . , ṡ

d
i ) which stores the velocities for each dimension of the vectorsi. The velocities

are responsible for changing the direction of the particle.The vectors′i = (s′1i , s′2i , . . . , s′di ) is a

copy of the vectorsi which produced the particle’s individual best fitness. Together,s′i andsi

represent the particles’ memories. Regarding the model selection problem, the vector positions

si encode the SVM hyper-parameter set to be optimized ands
∗ denotes the best solution found.

PSO starts the search process by initializing the particles’ positions randomly over the search

space. Then, it searches for optimal solutions iterativelyby updating them to fly through a

multidimensional search space by following the current optimum particles. The direction of

the particle’s movement is governed by the velocity vectorṡi, which is denoted by the sum of

the information from the best particle’s informant found inits neighborhood (i.e.s′net(i,λ)(q),

whereλ is the number of neighbors which communicate with particle indexi) and the particle’s

own experiences′i. For a new iterationq+1 and dimensiond, the update is computed as follows:

ṡd
i (q + 1) = χ(ṡd

i (q) + φr1(s
′d
i (q)− sd

i (q)) + φr2(s
′d
net(i,λ)(q)− sd

i (q))) (3.3)

whereχ is the constriction coefficient introduced by Clerc [24], and r1 and r2 are random

values. Constriction coefficient values ofχ = 0.7298 andφ = 2.05 are recommended [60].

1We use this functional notation for sake of generality. The equivalent to traditional PSO would be:S =
{xi,vi,pi}Pi=1
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Eventually the trajectory of a particle is updated by the sumof its updated velocity vector

ṡi(q+1) to its current position vectorsi(q) to obtain a new location, as depicted in Equation 3.4.

Figure 3.10 depicts an illustration of particle’s trajectory during position updating. Therefore,

each velocity dimensioṅsd
i is updated in order to guide the particles’ positionssd

i to search

across the most promising areas of the search space. In Algorithm 2 we summarize the standard

PSO method.

sd
i (q + 1) = sd

i (q) + ṡd
i (q + 1) (3.4)

current

current
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particle´s

velocity
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local best
global or

position
individual best si(q)

ṡi(q)

ṡi(q + 1)
si(q + 1)

s‘net(i,λ)(q)

s‘i(q)

Figure 3.10 Example of a particle’s trajectory during position updating.

Algorithm 2 Standard PSO Algorithm

1: Input: PSO parameters.
2: Output: Optimized solutions.
3: Randomly initialize the particles
4: q ← 0;
5: repeat
6: for all particlesi such that1 ≤ i ≤ P do
7: Compute fitness value for the current positionsi(q)
8: Updates′i(q) if positionsi(q) is better (s′i(q)← si(q))
9: end for

10: Select the best fitnesss′i(q)
11: for all particlesi such that1 ≤ i ≤ P do
12: Update velocityṡi(q) (Equation 3.3) and current positionsi(q) (Equation 3.4)
13: end for
14: q = q + 1
15: until maximum iterations or another stop criteria be attained
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In the canonical PSO formulation, an entire swarm is considered as a single neighborhood

where particles share the best information discovered by any member of the swarm, the so-

calledgbesttopology. The main disadvantage is that it forces the particles towards a single

best solution, which causes the swarm to lose the ability to explore the search space in parallel

more locally. Moreover, it has a premature convergence tendency [60]. Because of this, we

implement this module based on PSO with a more sophisticatedtopology called local best

(lbest) [60]. This topology creates a neighborhood for each individual containing itself and its

λ nearest neighbors in the swarm.

The neighborhoods can overlap and every particle can be in multiple neighborhoods. As a re-

sult, it allows interactions among the neighborhoods and eventually more series of events may

be discovered. With this characteristic, this module is capable of exploring multiple regions in

parallel and therefore fits better for functions with possible multiple local optima. Such a par-

allelism allows distant neighborhoods to be explored more independently, which is important

for multi-modal problems. Moreover, the particles are placed in potentially more promising

regions, which can allow faster recovery from variations between searching processes and also

allow them to be used by the adapted grid search module.

Nevertheless, even though PSO is a powerful optimization method, if the optimization problem

suffers some change in the objective function, for example between blocks of data, the particles

can get stuck in local minima (see Figure 3.4). To avoid this,an alternative should be to start

a full PSO optimization process from scratch each time that the module is activated. However,

it would be very time consuming and even at times unnecessaryif the changes occur around

the preceding optimum region. Taking this into account, we enable the module to restart opti-

mization processes from preceding results in order to save computational time. To implement

this mechanism, we combine two dynamic optimization techniques: re-randomization and re-

evaluation of solutions, and apply them into our PSO based module. In fact, both techniques

were already applied in the PSO literature [12, 48] to solve dynamic optimization problems,

but separately and using thegbesttopology.
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In particular, these PSO variants are commonly called DPSO (Dynamic PSO), so for the sake of

simplicity, we name this module as DPSO to refer such a combination of approaches. Neverthe-

less, it is important to distinguish that existing dynamic PSO algorithms apply such techniques

and change detection mechanisms in each iteration, since they suppose that objective function

changes can happen during the optimization. In here, as the optimization over a datasetD(k) at

a given instantk is indeed static, we apply these dynamic techniques to prepare the optimiza-

tion module for transitions from preceding optimizations knowledge to launch new ones. As a

result, we take advantage of these techniques to provide diversity in the solutions and clues on

optimal starting points before the optimization. Thus, unlike actual dynamic PSO versions, no

extra computational effort is added at each iteration. In light of this, in Figure 3.7 and in the

rest of this paper, our DPSO module represents the application of these dynamic techniques to

cooperate with the optimization algorithm, but not in its interior in each iteration.

The focus now shifts to the whole implementation, which involves two main steps related

to the way that the optimization process restarts. The main steps are listed in Algorithm 3.

First of all, once the DPSO module is activated, which uses information from the system’s

memory (STM) as well, every fitness is updated from the re-evaluation of the current position

si and best positions′i of each particlesi in the swarmS(k) (steps: 3 to 6). This is done to

prevent the particle’s memory from becoming obsolete [12].In fact, the fitness of the best

positions~pi can be profited from the preceding level (adapted grid-search), what dispenses a

second evaluation. Thereafter, a re-optimization processis launched by keepingρ% of the best

particles positions from the swarmS(k−1), which was computed in the previous optimization,

and by randomly creating new particles over the search space[48]. Some of these particles

located near to the previous optimum region. In this manner,we guarantee that fine searches

are realized based on previous information, which can adaptmore quickly to new data than

full optimization processes (steps 7 and 8). At the same time, we add more diversity to the

algorithm for searching new solutions, which enable us to avoid situations in which the whole

swarm has already converged to a specific area. Finally, steps 9 to 23 correspond to the main

steps of the PSO implementation, but are slightly modified byadding a mechanism that updates
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the connections among the particles, if no improvement is observed between iterations (steps

19 to 21). These latter steps were suggested as an alternative by Clerc [23] to improve the

adaptability, and hence the performance, of the swarm.

Algorithm 3 Our implementation of Dynamic PSO

1: Input: PSO parameters and previous swarmS(k − 1).
2: Output: Optimized solutions.
3: for all particlesi from S(k − 1) such that1 ≤ i ≤ P do
4: Compute fitness values forsi usingD(k)
5: Updates′i if si is better (s′i ← si)
6: end for
7: Initialize dynamically the new swarmS(k) by keepingρ% of the best information (posi-

tionss
′
i) from the preceding swarmS(k − 1) and by creating new particles.

8: Initialize the links among the particles based on a nearest neighborhood rule according to
the topology chosen.

9: q ← 0;
10: repeat
11: for all particlesi such that1 ≤ i ≤ P do
12: Compute fitness value for the current positionsi(q)
13: Updates′i(q) if positionsi(q) is better (s′i(q)← si(q))
14: end for
15: Select the best fitness of this iterationq, i.e. s′i(q)
16: for all particlesi such that1 ≤ i ≤ P do
17: Update velocityṡi(q) (Equation 3.3) and current positionsi(q) (Equation 3.4)
18: end for
19: if F(s∗(q)) = F(s∗(q − 1)) {No improvement. Change particle communication struc-

ture} then
20: Randomly change the particles’ links based on the topology chosen.
21: end if
22: q = q + 1
23: until maximum iterations or other stop criteria be attained

So, through the use of these modules, the proposed method allows the searching process to

evolve and adapt itself dynamically. Even though this framework has unique features, there is

still room for authors to investigate new strategies for theadapted grid search module, detection

mechanisms, and even strategies to re-optimize solutions.

In order to clarify the whole concept, we illustrate the proposed method in a case study in

Figure 3.11. This case study represents an empirical reference to the general concept illustrated
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in Figure 3.6. In particular, it depicts overviews of searching processes carried out by the

proposed method and full optimization processes over cumulative sequences of data increased

logarithmically from the Satimage database. Based on theseresults, it is shown in Figure 3.11

(a) that the proposed method can achieve similar results to those obtained by full optimization

processes with PSO (Full PSO), but more quickly and in fewer iterations iterations if the whole

sequence is considered.

Exploring this case study further, we compile a list of activities performed by the proposed

method during the searching processes and their effects in terms of the generalization error

on a test set, as shown in Figure 3.11 (b). It is easy to see which module of the framework

was responsible for selecting the final solution. In addition, we list the results of searching

processes between the datasetsD(6, 13) in a table in order to provide more details. Basically,

the results in the table include the use of the optimized swarm S(6), resulting from a DPSO

execution, as a pool of hypotheses for additional datasets,where a particlesi is selected as the

best one, according to some criteria and via: keeping the same previous best (BK), adapted

grid (AG), or DPSO processes.

Some of the main results are depicted in the table in Figure 3.11 (c), where we have selected the

ten most performing particles and presented their best positions in a logarithmic scale. Then,

for each set, we indicate the solution pointed out by the method by highlighting its fitness in

gray. When a previous best solution remains the same for the next dataset, no evaluation is

performed for the other particles.

Assuming that the solutions are well-placed in the search space, we have started by reporting

the results for the datasetD(6), where the best solutions9 in swarmS(6) was found by DPSO.

Next, the solutions9 found over the datasetD(6) has been kept for datasetD(7). We note that

the current best solution experienced a decrease in performance between datasetsD(7, 8) (in

next column), which is denoted as a negative behavior.

As a consequence, the adapted grid-search module is activated to try to find another satisfactory

solution. Following evaluation, the adapted grid module elects a new solutions7 and no further



58

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

Iterations

O
bj

ec
tiv

e 
fu

nc
tio

n

Model selection strategies (Optimization overview)

24 15 111 12 111111 29 11 15
Full PSO
Proposed Method

20 40 60 80 100

5

10

15

20

25

30

Iterations

O
bj

ec
tiv

e 
fu

nc
tio

n

Proposed Method

Optimization
Generalization error

(4.19,−2.33) 10.35
(3.90,−1.45) 10.06
(4.07,−4.51)   9.32

(4.04,−4.51)   9.62
(4.19,−4.51)   9.09

(4.21,−4.51)   9.03

(4.18,−2.0)   10.23

(4.07,0.11)     8.21

F

DPSO DPSO DPSO DPSO

BK BK

F F

DPSODPSO

(C, γ) (C, γ)

AG

BKs

DPSO

Fγ)(C,

DPSO

(3.84,0.18)     8.12

(4.03,0.06)     8.32

a)

1524 12 29 15

10 ...2 5 6 12... 13 16

Datasets

b)

c)

(3.70,−4.50) 19.84        −     18.20 15.76      −     13.76 13.13 11.07   (4.15,−4.51) 8.97

7 8 9 10 11 12 13

(4.21,−4.51) 15.35     15.12 15.52 13.48  13.10  12.73  12.17 10.08   (4.04,−4.51) 9.62
(3.90,−4.48) 19.84        −     16.86 15.15      −     12.92 12.54 10.49   (3.97,−4.48)10.31

(3.99,−4.51) 18.25        −     16.28 14.39      −     12.83 12.32 10.49   (3.89,−4.51) 9.79
(4.19,−4.51) 15.38        −     15.02 13.64      −     12.64 12.02 10.02   (3.61,−4.51)10.78
(4.04,−4.39) 19.44        −     16.09 14.09      −     12.55 12.54 10.37   (2.89,−4.50) 9.44
(3.93,−4.51) 18.65        −     16.86 15.00      −     12.73 12.54 10.49   (4.19,−4.51)10.02
(3.74,−4.49) 20.63        −     18.39 15.45      −     13.20 12.98 10.09   (4.20,−4.51) 9.03
(4.05,−4.50) 17.46        −     15.71 13.79      −     12.55 12.46 10.31   (4.06,−4.51) 9.15
(4.07,−4.31) 17.46        −     15.90 13.79      −     12.55 13.01   9.62   (4.07,−4.50) 9.32

BK AG AG BK AG AG

S(k)

F

S(16)S(13)S(6) D(k)
si

s10

s9

s8

s7

s6

s5

s4

s3

s1

s2

Figure 3.11 Case study: Operation of the proposed method, Dynamic
Model Selection (DMS). In (a), we show an overview of searching processes

for SVM models based on the proposed method and on full optimization
processes over sequences of incoming data. We can see that DMS can

approximate performing solutions by requiring fewer iterations than full
optimization processes. The dashed vertical lines indicate when more data

were injected and how many iterations were needed to accomplish the
searching tasks. Next, in (b) and (c), we show a zoom on the proposed
method’ activities and generalization errors. These figures empirically

depict an analogy to the general concept illustrated in Figure 3.6.
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searches are carried out, since the best current result has improved and there is no indication of

any big changes that would justify additional optimizations. Next, between datasetsD(8, 9),

the change detection rule is re-activated, and again a fine search is carried out over the other

solutions to check whether or not there is a better solution.The new solution returns tos9 and

another application of the rule over the two best results indicates that the DPSO module does

not need to be activated. Thereafter, between datasetD(9, 10), the current best particles9 was

preserved since no relevant variation has occurred.

On the other hand, the same behavior between datasetsD(8, 9) occurs among the datasets

D(10, 12), resulting ins2 ands7, respectively. Afterwards, the searching process continues

by re-activating DPSO for the datasetD(13), which results in a new swarmS(13) with a new

best solutions9. Therefore, dynamic optimizations are employed whenever the method judges

it necessary to update the swarm. Mainly due to performance degradation, or for instance,

when the adapted grid is activated and the results are neither improved nor do they characterize

changes in the search space.

3.3 Experimental Protocol

A series of experiments were carried out to test the effectiveness of the proposed method.

In particular, we have compared our method with other model selection strategies under a

gradual learning scenario. In the latter, an SVM classifier must be built gradually from scratch

whenever more data become available. We have used datasets generated from synthetic and

real-world problems. For each dataset, the following experimental setup was conceived: First

of all, the original training sets were divided into sets of data. The total number of samples for

each dataset was progressively increased according to a logarithmic rule [45], from about 16

examples per class to the total number of samples available in the dataset. For datasets in which

the original distribution of samples was unbalanced among the classes, we have maintained the

original class-priors for each dataset.

Then we have applied each SVM model selection strategy over the datasets. Once the model

for each dataset has been selected, the performance of the classifiers was assessed in terms of its
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generalization error on the test set after each simulation.The generalization error was estimated

as the ratio of misclassified test set samples over the total number of test samples. This made

it possible to observe the effect of the training dataset size for each model selection approach

and the final test performance attained. As some strategies tested use stochastic algorithms, the

results represent averages drawn over 10 replications. Thekernel chosen for the SVM classifier

was the RBF (Radial Basis Function), and so, the model selection methods were carried out

to find optimal values for the hyper-parameter set(C, γ). Additional specifications on the

approaches tested and information on the datasets are provided in next section.

3.3.1 SVM Model Selection Strategies Tested

We have compared the following SVM model selection strategies:

• Traditional Grid-Search (GS): This method selects the best solution by evaluating several

combinations of possible values. The best combination is kept to train the final SVM

classifier. In this study, we consider a grid of 70 (7x10) positions, where the possible

combinations lie within these values:C = {0.01, 0.1, 100, 150, 170, 250, 600}, andγ =

{0.08, 0.15, 15, 20, 50, 100, 300, 500, 1000, 1500}.

• 1st Grid-Search (1st-GS): This strategy applies a traditional grid-search only overthe

first dataset and retains the same solution found for the subsequent subsets.

• Full Particle Swarm Optimization (FPSO): The optimal hyper-parameter values are se-

lected by the standard PSO algorithm for each new set of data.

• Chained PSO (CPSO): PSO is applied by this strategy to search for optimal solutions.

However, the solutions here are optimized among sequences of datasets in a chained way,

like a serial process. This means that the optimization process is performed continuously

over the datasets, and not by fully re-initializing the swarm between sets.

• Dynamic Model Selection (DMS): This strategy is the proposed method introduced in

Section 3.2.
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3.3.2 Experiments Parameters Setting

The following parameters setting was used in the experiments.

• Optimization Algorithms Parameters: The maximum number of iterations and the swarm

size were set to 100 and 20, respectively. The dimensions of each particle are denoted by

hyper-parameter values forC andγ, where the maximum and minimum values of such

dimensions were set to[2−6, 214], [2−15, 210], respectively.

The topology used in PSO and DPSO waslbest with λ = 3. This topology was selected

because unlike thegbest topology, which has a tendency towards premature convergence

because all the particles are influenced by the same global source, thelbest topology is

more sophisticated for exploring multiple regions in parallel [60]. Furthermore, the par-

allelism of thelbest topology allows distant neighborhoods to be explored more indepen-

dently. Basically, this topology creates a neighborhood for each individual comprising

itself and itsλ nearest neighbors in the swarm. A neighborhood may consist of some

small group of particles, where the neighborhoods overlap and every particle can be in

multiple neighborhoods.

Two stop criteria were implemented for the optimization processes. The first was imple-

mented based on the maximum iteration permitted. As a result, the optimization might

finish whenever the number of iterations reaches the maximumvalue (100). However,

the second criterion was built based on the best fitness value. Generally speaking, if

the best fitness value did not improve over 10 consecutive iterations, then the optimiza-

tion process was stopped. In fact, this last stop criterion was the most active, since the

simulations never attained to the maximum number of iterations.

• Objective Function: Several objective functions have been proposed in the literature for

searching for optimal hyper-parameters, e.g. radius margin bound [118], span bound

[19], support vector count [117], etc. More information about them can be found in [20].
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Unfortunately, these measures usually depend on certain assumptions, e.g. they are valid

for a specific kernel or require a separation of the training set without error.

The problem is that these assumptions are quite strong for real-world problems. Thus,

the best alternative is to use as objective function measures related to the performance

of the classifiers, since no assumptions are needed [40]. Taking this into account, the

minimization of the generalization error from cross-validation (CV) procedures over a

training set is a good option. In theν-CV procedure, the original training set is firstly

divided intoν portions of data, and then sequentially one dataset is tested by using a

classifier trained from the remainingν − 1 portions of data. To sum up, it means that

each instance of the entire training set is predicted once, and the final generalization

error is computed as an average over the test errors obtained. In fact, aν-CV is the

best option since it results in a better generalization error estimation than by separating

a small dataset into a hold-out procedure and being less computationally expensive than

by using leave-one-out procedure (ν=total number of training samples), for example. In

this work, we have usedν = 5 (five-fold cross-validation), since it is the most commonly

used and is also suggested in [18].

3.3.3 Datasets

We have used nine synthetic and real-world datasets in the experiments. They are listed in

Table 3.2 along with more details. The synthetic problems used were the well-known Circle-

in-Square (CiS) [14] and P2 [116] problems. The CiS problem consists of two classes, where

the decision boundary is nonlinear and the samples are uniformly distributed in ranges from

0 to 1. A circle inside a square denotes one class, while the other class is formed by the area

outside the circle. The area of the circle is equal to half of the square. The P2 problem is also a

two-class problem, where each class is defined in multiple decision regions delimited by one or

more than four simple polynomial and trigonometric functions. As in [45], one of the original

equations was modified such that the areas occupied by the classes become approximately
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equal. In both problems, the classes are nested without overlapping, so the total probability of

error is 0%.

The real-problems employed are described as follows. The Adult dataset represents a two-class

problem from the UCI Repository [4]. The task is to predict whether or not income exceeds

$50K/yr based on census data. The DNA, German Credit, and Satimage datasets are from the

Statlog Project [79]. The DNA dataset is a multi-class problem where each class represents

a different protein. The German Credit dataset is a binary-classification problem, where the

goal is to classify people as good or bad credit risks based ona set of attributes. The Satimage

dataset consists of multi-spectral values of pixels in a satellite image, where the aim is to predict

the class of central pixels in 3x3 neighborhoods, given the multi-spectral features.

The Nist-Digits is a dataset composed of samples from the NIST Digits Special database 19

(NIST SD19). Composed of handwritten samples of 0 to 9 digit images, this dataset is one

of the most popular real-world databases employed to evaluate handwritten digit recognition

methods. We have used two distinct test sets denoted as Nist-Digits 1 (60,089 samples) and

Nist-Digits 2 (58,646 samples) in this paper. Both are partitions of the NIST’s Special Database

19: hsf-4 and hsf-7, respectively. The former is consideredto be more difficult to classify than

the latter. Samples from hsf-0123 partitions were used as training set. The feature set employed

is the same as that suggested by Oliveiraet al. [85]. Basically, the features are a mixture of

concavity, contour and character surface, where the final feature vector is composed of 132

components normalized between 0 and 1.

Finally, the IR-Ship database is a military database which consists of Forward Looking Infra-

Red (FLIR) images of eight different classes of ships. The images were provided by the U.S.

Naval Weapons Center and Ford Aerospace Corporation. The same feature set employed by

Park and Sklansky [89] was used in this work. More details on the synthetic, Nist-Digits, and

IR-Ship databases can be found in the appendix I.
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Table 3.2 Specifications on the datasets used in the experiments

Database Number of Number of Number of Number of Number of
Classes Features Training Samples Sets Test Samples

Adult 2 123 3,185 19 29,376
Circle-in-Square 2 2 3,856 21 10,000
DNA 3 180 1,400 15 1,186
German Credit 2 24 800 13 200
IR-Ship 8 11 1,785 10 760
Nist-Digits 10 132 5,860 16 60,089/58,646
P2 2 2 3,856 21 10,000
Satimage 6 36 4,435 15 2,000

3.3.4 Parallel processing

In order to speed up the execution of our experiments, we haveimplemented the PSO algorithm

and our proposed method in a parallel processing architecture (a Beowulf cluster with 20 nodes

using Athlon XP 2500+ processors with 1GB of PC-2700 DDR RAM (333MHz FSB)).

The optimization algorithms were implemented using LAM MPIv6.5 in master-slave mode

with a simple load balance. It means that while one master node executes the main operation

related to the control of the processes, like the updating ofparticles’ positions/velocities, and

then switching between the different levels (e.g. adapted grid, DPSO), the evaluations of fit-

ness are performed by several slave processors. The resultsobtained are given in subsequent

sections.

3.3.5 Obtained Results

The results are reported in Tables 3.3, 3.4, and 3.5, in termsof generalization error rates,

number of stored support vectors, and computational time spent, respectively. It is important

to mention that these results were tested on multiple comparisons using the Kruskal-Wallis

nonparametric statistical test by testing the equality between mean values. The confidence

level was set to 95% and the Dunn-Sidak correction was applied to the critical values. The best

results for each classification problem are shown in bold.
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From the results, we can see how important a careful selection of hyper-parameters is to gener-

ate high performing classifiers. For instance, the results for the GS and 1st-Grid approaches in

Table 3.3 show us that searching for optimal hyper-parameters given a new dataset can achieve

better results, in both classification accuracy and model complexity, than those that apply a

searching process just once.

Table 3.3 Mean error rates and standard deviation values over 10
replications when the size of the dataset attained the size of the original

training set. The best results are shown in bold

Database GS 1st-GS FPSO CPSO DMS
Adult 17.54 24.06 15.55 (0.06) 23.85 (0.01) 15.56 (0.05)
CiS 0.34 0.67 0.14 (0.03) 0.19 (0.03) 0.13 (0.03)
Dna 12.82 42.24 5.13 (0.18) 6.37 (0.44) 5.16 (0.56)
German Credit 30.00 35.00 26.6 (0.21) 30.10 (0.32) 26.65 (0.31)
IR-Ship 6.05 7.50 4.86 (0.35) 5.66 (0.45) 4.72 (0.29)
Nist-Digits 1 2.82 6.84 2.75 (0.04) 3.02 (0.23) 2.74 (0.14)
Nist-Digits 2 7.38 14.30 6.68 (0.15) 7.33 (0.59) 6.72 (0.39)
P2 1.79 3.71 1.64 (0.10) 2.03 (0.29) 1.69 (0.14)
Satimage 10.20 10.50 8.06 (0.13) 14.32 (0.30) 8.26 (0.22)

Table 3.4 Mean of support vectors and standard deviation values
obtained over 10 replications when the size of the dataset attained the size of
the original training set. The best results for each data setare shown in bold

Database GS 1st-GS FPSO CPSO DMS
Adult 1508 1572 1176.50 (12.53) 3075.00 (10.00) 1174.80 (12.66)
CiS 64 476 35.40 (6.47) 43.30 (12.18) 37.40 (8.36)
Dna 1906 1914 628.40 (32.50) 436.10 (42.83) 810.60 (31.69)
German Credit 800 516 418.40 (3.63) 776.50 (74.31) 421.30 (9.74)
IR-Ship 443 661 320.70 (13.34) 671.40 (21.74) 318.70 (9.53)
Nist-Digits 880 2912 898.40 (30.45) 1556.30 (62.56) 947.40 (55.09)
P2 226 430 161.40 (26.12) 383.50 (77.37) 152.80 (8.47)
Satimage 1117 1073 1888.00 (93.51) 1384.10 (60.64) 1849.00 (99.64)

In addition, we have observed that PSO based approaches are very promising, since their results

have overtaken those of the two grid-search methods (see in Tables 3.3 and 3.4. Furthermore,

the most important fact is that the proposed method (DMS) wasable to attain similar results, but

was less time consuming, than the full PSO (FPSO) strategy. As previously mentioned, because

some of the model selection strategies (FPSO, CPSO, and DMS)use stochastic algorithms, we
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have replicated the experiments 10 times. Therefore, the results for these strategies represent

averages over 10 replications.

Table 3.5 Mean computational time spent (hh:mm:ss) for model selection
processes over all sequences of datasets. Results with FPSOover the whole

databases (FPSO-all data) are also reported

Database FPSO-all data FPSO CPSO DMS

Database FPSO-all data FPSO CPSO DMS
Adult 01:28:07 (00:38:13) 02:41:36 (00:02:53) 01:37:21 (00:01:07) 00:32:31 (00:02:50)
CiS 02:56:15 (00:55:41) 05:07:17 (00:09:59) 2:23:10 (00:06:12) 01:35:45 (00:08:34)
Dna 00:34:59 (00:15:59) 01:07:58 (00:01:34) 00:42:27 (00:00:39) 00:14:21 (00:01:01)
German Credit 00:07:51 (00:00:57) 00:13:43 (00:00:06) 00:11:36 (00:00:02) 00:13:17 (0:00:05)
IR-Ship 00:19:08 (00:07:41) 00:30:42 (00:01:01) 00:15:17 (00:04:09) 00:11:26 (00:05:00)
NistDigit 06:47:51 (02:22:15) 13:46:00 (00:16:04) 03:46:24 (00:08:33) 00:56:38 (00:05:34)
P2 06:02:28 (00:48:29) 16:04:54 (00:17:44) 10:21:50 (00:13:47) 05:35:55 (00:33:24)
Satimage 01:45:55 (00:38:40) 02:46:18 (00:03:41) 01:41:29 (00:02:22) 01:31:03 (00:05:04)

All these results, mainly comparing GSvs1st-GS and CPSOvsDMS, are particularly interesting

because they confirm the importance of tracking optimal solutions when new data are available

and show the relevance of the proposed method. By analyzing the results, we can say that by

shifting between re-evaluations and re-optimizations of previous swarms can be quite effective

for building new solutions.

The adapted grid module is less time consuming and performs better than evaluating, a grid

randomly composed of 70 different combinations (GS), for instance, or starting a whole new

optimization process (FPSO). Besides, it was shown that theDPSO algorithm is capable of

tracking optimal solutions by resetting the particles’ memories and injecting diversity. To

better visualize the performance of the methods, we also report the mean error rates across all

the subsets and over the 10 replications for two case studiesin Figure 3.12.

For a deeper analysis of the proposed method, we have depicted in Figure 3.13 the frequencies

of at which a module was responsible for the selection of the final solution. From these results,

it is even possible to guess the different degrees of difficulty among the databases. For example,

databases whose the final solutions were pointed out more often by the DPSO module, e.g.
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German Credit and DNA, seem to have a major degree of uncertainty, due perhaps a greater

overlapping between classes, than other databases, such asNist-Digits and CiS, for example.
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Figure 3.12 Error and support vectors rates. For the databases, Ship ((a)
and (b)) and Satimage ((c) and (d)). The results were obtained over 10

replications.

By comparing the optimization approaches directly, we can see that the results reported in Ta-

ble 3.6 demonstrate that our DPSO implementation is advantageous, mainly in terms of the

processing time demanded to search for solutions. Unlike FPSO, which requires several itera-

tions, because it starts a new search randomly every time, our dynamic version saves time by

applying dynamic optimization techniques, such as: the useof previous knowledge, increasing
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diversity, etc. As a result, when the DPSO module is activated, it converges faster and with

similar results to those obtained with FPSO and better than those obtained with CPSO.
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Figure 3.13 Average of frequencies which indicates how manytimes each
module was responsible for pointing out the final solution.

The results also reveal an important advantage of our dynamic model selection strategy (DMS)

over the common used FPSO strategy. While a huge amount of computational time was re-

quired for the FPSO optimization approach to perform the model selection processes, our pro-

posed method was capable of finding satisfactory solutions in less computational time, by

mainly considering it for each set of data.

This is because the FPSO strategy requires a large number of evaluations than the proposed

method, especially over each dataset, or still because whenapplied gradually over the datasets,

the proposed method usually accelerates the searching process by approximating solutions

before reaching the total size of training sets.

Based on these results, we can see that the proposed method, DMS, has spent less computa-

tional time than the other strategies. Besides, it can also be noted that sometimes the applica-
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tion of DMS gradually over subsets of data can be even faster than realizing a full optimization

process over the entire original training set.

Table 3.6 Mean of number iterations attained and standard deviation
values for each optimization algorithm over 10 replications. The results for
the Full and Chained PSO strategies were computed over all datasets. In

contrast, the results for the DPSO module were computed considering only
the datasets where it was activated

Database Full PSO Chained PSO DPSO Module
Adult 18.63 (7.04) 12.00 (1.04) 14.66 (4.37)
CiS 23.53 (7.52) 17.71 (2.92) 17.05 (6.10)
Dna 23.18 (7.07) 15.95 (5.47) 17.08 (5.09)
German Credit 21.48 (7.44) 12.61 (2.14) 14.07 (4.34)
IR-Ship 30.45 (8.78) 15.82 (5.34) 17.38 (5.20)
Nist-Digits 31.60 (8.44) 14.17 (4.74) 15.72 (6.41)
P2 27.39 (9.26) 20.72 (5.81) 15.50 (4.61)
Satimage 24.86 (8.19) 16.78 (6.53) 18.14 (6.48)

Thus, the efficiency of the proposed method was demonstratedthrough the results. Even though

the strategies sometimes perform similarly in terms of generalization errors, as in the case of

the CiS database, the proposed method is clearly superior with respect to other factors, e.g.

the model complexity (number of support vectors) and computational time. Furthermore, by

taking fewer iterations and having adaptation capabilities, the use of the proposed method in a

fully dynamic environment is very promising, mainly in those applications where the system

must adapt itself to new data (time-series data, for example).

3.4 Discussion

In this chapter we presented the SVM model selection problemas a dynamic optimization

problem which depends on available data. In particular, it was shown that if one intends to

build efficient SVM classifiers from different, gradual, or serial source of data, the best way

is to consider the model selection process as a dynamic process which can evolve, change,

and hence require different solutions overtime depending on the knowledge available about the

problem and uncertainties in the data. In order to solve the model selection problem and also

take into account this dynamism, we proposed a PSO-based framework (DMS) based on the
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ideas of self-organization, change detection, and dynamicoptimization techniques to track the

optimal solutions and save computational time. The relevance of the proposed method was

confirmed through experiments conducted on nine databases.

Briefly, the results have shown that: (1) if PSO is applied sequentially over datasets as a whole

optimization process (Chained PSO) with the purpose of saving computational time, the re-

sulting optimized solutions may stay trapped in local minima after successive hyper-parameter

model selection processes. By contrast, (2) although full optimization processes with PSO

(Full PSO strategy) constitute an efficient way to achieve good results, they are very time con-

suming, particularly when applied to each new dataset. (3) DMS was very similar to full opti-

mization processes, but less computationally expensive, mainly due to the use of the dynamic

optimization techniques.

Above all, we examined the SVM model selection problem in a gradual learning context where

hyper-parameters must be re-estimated in order to retrain an SVM classifier from data at differ-

ent timesk in a cumulative fashion, as occurs in applications where data collection is expensive,

such as cancer diagnosis, signature verification, etc. The proposed method is also particularly

useful for real-world applications requiring the generation or updating of dynamically in a se-

rial way (e.g. those involving streaming data). We present some more additional results that

restate our conclusions concerning the strategies tested in the appendix II.

Nevertheless, even considering that the optimization of a single classifier is important to in-

crease its performances, we know that the use of an ensemble of classifiers can improve the

overall performance of a classification system. Especiallywhen the members composing the

ensemble are especially selected, which makes them still more accurate.

Taking this into account, the evaluation and selection of such classifiers depend on the choice

of an adequate objective function. Therefore, in order to better understand and apply classi-

fier ensembles to compose our adaptive incremental system inthe context of this thesis, we

investigate a series of measures, based on different theories, to achieve such tasks in the next

chapter.



CHAPTER 4

TOWARDS TO THE EVALUATION AND SELECTION OF ENSEMBLE OF

CLASSIFIERS

The fusion of classifier decisions into ensembles has been widely applied to improve the per-

formance of single classifiers. Over the last years, severalefforts on ensembles of classifiers

have been conducted to find measures that could be well correlated with ensembles’ accuracy

[67, 99, 36, 28, 125, 96, 69, 73, 122, 9, 116, 110]. However, despite of the efforts, the under-

standing of the effectiveness of ensembles methods has still intrigued many authors.

A consensus in the literature indicates the presence of somediversity between the ensembles

members as the main factor for improving the overall performance [28, 69, 73, 122, 9]. Even

though it is well accepted that diversity is a necessary condition for improving the majority

vote accuracy, there is no general agreement on how to quantify or to deal with it. On the

other hand, bias-variance and margin theory has also allured some attention in the literature,

since it may cast the study of ensembles of classifiers into a large margin classifiers context. In

particular, the margin theory was first applied by Schapire et al. [99] to provide an explanation

on how the boosting method works. After that, other authors have used this theory to create

new ensemble methods [6, 8].

The main goal of this chapter is, through an empirical study,to investigate measures for the

evaluation and selection of ensemble members. This is important because sometimes, mainly

for those situations in which only small datasets are available, the use of ensemble accuracy

over such data may not provide sufficient information to select the best ensemble. The conclu-

sions obtained in this chapter help us on the choice of the best objective function to be used in

our adaptive incremental learning system.

In order to achieve this, we start our study by surveying measures from some classical theories:

bias-variance, diversity measures, and margin theory for ensembles. Afterwards, an experi-

mental protocol similar to one introduced by Valentini [116] for characterizing ensembles of
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Support Vector Machines is employed to evaluate the measures. In addition, a discussion on

the obtained results is also offered, in which we try to answer some questions currently found

in the literature, such as:

• Which measure could offer the best guidance to evaluate the classifiers fusion?

• How are the diversity measures related to each other?

• Is there a relationship between diversity, margins, and ensemble accuracy?

• Which are the best measures for observing such relationship?

This chapter is organized as follows. In Section 4.1 we summarize the bias-variance theory

for ensemble according to Domingos’ theoretical framework[36]. Section 4.2 surveys classi-

cal measures to estimate diversity for classification fusion. Section 4.3 introduces the margin

theory for ensemble of classifiers and measures related to it. Section 4.4 describes the exper-

imental protocol applied and the obtained results. Finally, we discuss results and outline the

conclusions in Section 4.5.

4.1 Bias-Variance Decomposition of Error

In general, zero-one loss functions are the only option to beapplied to classification problems.

In order to analyze bias-variance in this context, an alternative is to use the unified bias-variance

decomposition of the error proposed by Domingos [36]. In this theory, regarding a free noise

case, the expected lossEL(·) for a samplex is basically decomposed into two terms: the bias

B(·) and the varianceV (·). Therefore, following the same notation introduced by Valentini in

[116], the expected loss is computed as:

EL(x) = B(x) + V (x) (4.1)
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B(x) = E(ym, y∗) represents the bias of an ensemble ofL classifiers on an examplex. The

bias is the lossE(.) incurred by the main predictionym with respect to the optimal prediction

y∗. Therefore, for the 0/1 loss, the bias is always 0 or 1 and computed by:

B(x) =







1 if ym 6= y∗

0 if ym = y∗
(4.2)

For an ensemble composed of{Mi}Li classifiers, the variance of errors is considered according

to two opposite aspects: the unbiased and biased variance. The unbiased varianceVu(x) is the

variance whenB(x) = 0, it is responsible for increasing the error. On the other hand, biased

varianceVb(x) represents the variance whenB(x) = 1, hence it is responsible for decreasing

the error. These variances are calculated as:

Vu(x) =
1

L

L
∑

i=1

[(ym = y∗) ∧ (ym 6= yMi
)] (4.3)

Vb(x) =
1

L

L
∑

i=1

[(ym 6= y∗) ∧ (ym 6= yMi
)] (4.4)

whereyMi
is the prediction provided by a classifierMi.

Finally, the net varianceVn(x) is defined in order to combine the effects of unbiased and biased

varianceVn(x) = Vu(x) − Vb(x). From this point of view, variance can be seen as a measure

of diversity, where its effects on error are related to the type of the variance [115, 116].

This decomposition for a samplex can be generalized to a whole dataset by definingE
x
[.].

This way the average biasE
x
[B(x)], the average unbiased varianceE

x
[Vu(x)], and the aver-

age biased varianceE
x
[Vb(x)] compose the expected loss of generalization over all dataset is

redefined to:

E
x
[EL(x)] = E

x
[B(x)] + E

x
[Vu(x)]−E

x
[Vb(x)] (4.5)
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Overall, the bias-variance decomposition of error theory allows to understand the working of

ensembles. Unfortunately, as it is defined by a set of metrics, the use of the bias-variance theory

for the selection of ensembles is more complex.

By contrast, the margin theory can express the same concepts, but in a more compact way,

since the increasing of margins denotes the decreasing of the bias and variance terms together

[36]. In light of this, we focus on the margin theory and diversity measures. However, for

sake of clarity, we also present results based on bias-variance analysis with two problems in

appendix III.

4.2 Diversity Measures

Diversity has been quantified in several ways for classification fusion. As a result, different

measures have been proposed in the literature. In this section, we describe seven well-known

diversity measures which are usually grouped into two types: pairwise and non-pairwise [73].

Their values vary in a range of 0 and 1. Moreover, in here each diversity measure name is

accompanied with a downward arrow↓ or upward arrow↑ indicating if the diversity obtained

is decreasing or increasing with its value.

4.2.1 Pairwise Measures

In pairwise measures, firstly the diversity between all pairs of classifiers is calculated. There-

after, the overall diversity measure values are computed asthe mean of the pairwise values.

For instance, givenL classifiers,L×(L−1)
2

pairwise diversitiesdij are measured between pairs

of classifiers, and then the final diversityd̄ is defined by an average:

d̄ =
2

L(L− 1)

∑

i,j=1,...,L

i6=j

di,j (4.6)

In general for a pairwise measure,n is the total number of samples,n11 is the number of times

that both classifiers are correct,n00 represents the number of times that both classifiers are
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incorrect, andn10 andn01 denote the number of times when just the first or second classifier is

correct, respectively. Below, we describe some pairwise measures applied in this work.

4.2.1.1 Q average (↓)

With this measure, classifiers that tend to recognize the same samples correctly will have posi-

tive values ofQ. This measure is computed for pairs of classifiersi andj as:

Qi,j =
n11n00 − n01n10

n11n00 + n01n10
(4.7)

4.2.1.2 Disagreement measure (↑)

This measure denotes the ratio between the number of observations where one classifier is

correct and the other is incorrect with respect to the total number of observations [104]. For a

pair of classifiersi andj, it is computed by:

DSi,j =
n10 + n01

n
(4.8)

4.2.1.3 Double-fault measure (↓)

The double-fault measure estimates the probability of coincident errors for a pair of classifiers.

It is defined for a pair of classifiersi andj as [104, 42]:

DFi,j =
n00

n
(4.9)

4.2.2 Non-pairwise Measures

Unlike pairwise measures, non-pairwise measures are not calculated by comparing pairs of

classifiers, but by comparing allL classifiers as a whole. Below there are some examples of

these types of measures:
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4.2.2.1 Kohavi-Wolpert (KW) variance (↑)

Let l(xj) be the number of classifiers that correctly recognizexj. From the formula for the

variance [67], the diversity measure becomes:

KW =
1

nL2

n
∑

j=1

l(xj)(L− l(xj)) (4.10)

4.2.2.2 Generalized diversity (↑)

Let Z be a random variable to represent the proportion of classifiers that are incorrect on a

randomly drawn samplex, pi is the probability thatZ = i/L, andp(i) is the probability thati

randomly chosen members will be wrong on a randomly chosenx. The generalized diversity

is defined as [90]:

p(1) =
L

∑

i=1

i

L
pi, p(2) =

L
∑

i=1

i(i− 1)

L(L− 1)
pi (4.11)

GD = 1− p(2)

p(1)
(4.12)

4.2.2.3 Ambiguity (↑)

The ambiguity measure was proposed by Zenobi and Cunningham[125]. Basically, it measures

the disagreement among the classifiers predictionsŷj with respect to the majority prediction

ym, where the factor correctness is not important. The ambiguity measure can be defined as:

A =
1

nL

n
∑

i=1

L
∑

j=1

[yim 6= ŷij] (4.13)

4.2.2.4 Difficulty (↓)

Unlike the ambiguity measure, the difficulty measure [44] like most of the measures is calcu-

lated taking into account the base classifiers’ correctness. The goal is to measure the degree of
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classification difficulty of samples. Basically, this measure is defined to be the variance of aX

random variable which denotes the proportion of classifiersthat correctly classify a samplex:

DY = σ2(X).

4.3 Margin Theory

The margin theory was originally applied to develop the Support Vector Machines theory [117]

and to explain the success of Boosting [99]. In the former, Vapnik [117] has introduced the idea

that the generalization error of a classifier can be decreased by maximizing the separation mar-

gin between classes. Basically, the margin of a samplex represents a degree of confidence in

its classification. Here, in order to provide a global understanding of this theory, we summarize

the different ways to compute the margin regarding a sample.

First, the margin of a single classifier based on some discriminate functionf(.) over a sample

(x, y) with y ∈ [−1, 1] andf(x) 7→ [−1, 1] can be computed by:

τ(x, y) = y · f(x) (4.14)

Second, if the classifier is based on some probabilistic model, so the margin can be defined as:

τ(x, y) = P (y|x)−max(P (y 6= j|x)) (4.15)

wherej is any other class related to the classification problem. Next, for ensembles of clas-

sifiers, the concept of the margin follows the same idea introduced by Schapire et al. [99].

In general, the margin of a samplex can be computed by Equation 4.16 or by Equation 4.17

[43, 110], wherevy is the number of votes for the true class,vj is the number of votes for any

other class, andc is the maximum number of classes in the problem:

τ(x, y) =
1

L






vy −

∑

j=1,...,c

j 6=y

vj






(4.16)
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τ(x, y) =
1

L



vy − arg max
j=1,...,c

j 6=y

vj



 (4.17)

The main difference between these two definitions for ensembles is that, while the first one

applies a sum operation, the second one computes a max operation. Based on the first margin

definition, when dealing with multi-class problems the margins can even assume negative val-

ues for correct ensemble decisions, i.e. when there is a plurality but not a majority [43]. By

contrast, following the second definition, which is a special case of the first one, the margins

are always positive when the ensemble is correct and negative otherwise. Thus, for the sake of

clarity, in this chapter, we employ both definitions and showthat in fact they perform similarly

and converge to the same regions.

4.3.1 Margin-Related Measures

Naturally, the definition of margin for a samplex can also be generalized and employed to other

measures applied over a datasetD = (xi, yi)
n
i=1. In particular, there are two main measures

related to this theory:

• Minimum Margin(↑): The minimum margin of an ensemble of classifiers on a dataset D
is defined as the smallest value of margin obtained to any correct label [43]. Therefore,

the minimum margin is governed by:

̺(D) = arg min
1≤i≤n

(τ(xi, yi)), (4.18)

• Average Margin(↑): the average margin denotes the mean of all margins obtained over

samples of a given datasetD. This measure can be calculated as:

µ(D) =
1

n

n
∑

i=1

τ(xi, yi) (4.19)
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In addition to these two typical margin-based measures, another measure has been proposed

from the margin theory. In here, we denote this measure as CI measure, since it was derivate

from the Chebishev’s Inequality. This measure represents ageneralization bound suggested in

[8]. In particular, assuming an average marginµ(D) ≥ 0, this measure is defined as:

CI(↓) =
σ(τ(D))

(µ(D))2
(4.20)

This measure establishes a relation between the strength ofthe base classifiers (average margin)

and the dependence between them for predicting the generalization error. This is because, it has

been proven that the variance of the margins is lower or equalto the average of the correlation

coefficients of pairs of classifiers times an average of variance between them [8].

Finally, the use of cumulative margin distribution graphics is also an efficient tool to observe

the ensembles’ behaviors. They can be computed by two simplesteps. First, the set of mar-

gin values from a dataset is sorted. Next, for each possible value of margin is calculated the

percentage of the samples whose margins are lower or equal tothe current value. Graphics of

cumulative distribution of margins were firstly introducedby Schapire et al. [99] to demon-

strate that Boosting maximizes margins. Once that the definitions of diversity and margin

theories were already presented, we describe the experimental protocol adopted and the results

obtained in the next section.

4.4 Experimental Protocol

In order to investigate the measures previously introducedas objective functions, we have

carried out an experimental protocol similar to one realized by Valentini [115, 116] for charac-

terizing ensembles of Support Vector Machines (SVM).

The experimental setup has been organized into two steps. First of all, we have selected

the complex synthetic problem denoted P2 and two other multi-classes real-world problems,

Satimage and Letter, from Satlog collection [79]. P2 [115] is a classification problem that
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consists of two classes (I andII), where the decision region for each class is delimited by

one, two, or even more than four equations and without overlapping between the distributions.

More details about this synthetic problem can be found in theappendix I.

We summarize some information about the three classification problems used in Table 4.1. For

the P2 problem, a large dataset was generated and splited into a small training set and a large

testing set composed of 100 and 10,000 samples respectively. For the real-world problems, the

same original distributions of samples for training and test sets were used.

Table 4.1 Information on the databases

Database Number of Number of Number of Number of
Classes Features Training Samples Test Samples

P2 2 2 100 10,000
Satimage 6 36 3,104 1,331

Letter 26 16 10,500 4,500

Thereafter, ensembles of SVMs with RBF-kernel varying theC andγ parameters were built

based on the Bagging method [5]. Therefore, ensemble members were created by taking ran-

dom samples with replacement from a given original trainingsetD, and by building them

on different bootstrapped subsets. The total number of 50 classifiers was generated for each

problem.

For each test samplex, the final classification decision was made by taking the majority vote

over the class labels produced by each ensemble member. A SVMone-against-one strategy

was employed when dealing with the multi-class problems. Moreover, a RBF kernel was used

because it nonlinearly maps samples into a higher dimensional space. Furthermore, this kernel

has also obtained superior power of generalization and lower complexity than the Polynomial

kernel [115], for example. The variations of theC andγ parameters were done based on these
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values:


















γ ∈ {10000, 2500, 100, 25, 4, 1, 0.25, 0.04, 0.01, 25e03,

4e04, 1e04, 25e05, 11e05, 6e06, 4e06, 1e06}
C ∈ {0.01, 0.1, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}

Therefore, 204 different combinations of models were trained and evaluated on each subset of

data totalizing more than 30,600 different RBF-SVMs for alldatabases. Finally, the measures

introduced in Sections 4.2 and 4.3 were evaluated over the ensembles generated and compared

with their average loss and generalization errors. The average loss of predictions is computed

between base classifiers outputsŷj and a true classy∗
i . In particular, it represents the mean

error rate between the ensemble members as defined in Equation 4.21.

A.Loss =
1

nL

n
∑

i=1

L
∑

j=1

[ŷij 6= y∗
i ] (4.21)

While the generalization error of the ensembles is computedaccording to Equation 4.22, where

ym denotes the majority vote. It corresponds to the actual error of the ensemble after combining

the base classifiers.

G.Error =
1

N

N
∑

i=1

[yim 6= y∗
i ] (4.22)

4.4.1 Obtained Results

From the obtained results we could observe very interestingrelationships among diversity mea-

sures, margin theory, and majority vote accuracy. In order to better examine them, we start by

analyzing the best results for each measure previously mentioned regarding each theory and

classification problem tested. The results are reported in Tables 4.2, 4.3, and 4.4. In these

tables, we can see the optimum value reached for each measure, their corresponding ensemble

configuration, and generalization power yielded, i.e. in terms of individual errors (i.e. average

loss) and generalization error after combination.
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In Figures 4.1, 4.2, and 4.4, we can also observe the behaviorof all measures concerning

two different perspectives of the ensembles with the best performances, i.e. with the lowest

generalization error. In the first one, results of differentensembles are plotted by fixing the

value of the parameterC and varying the parameterγ. By contrast, in a second perspective,

the parameterγ is fixed whileC is varied. Based on all this information, we examine each

experimental result with respect to the majority vote accuracy, and finally discuss details on

their use as objective function for ensemble selection. This analysis is described in the next

sections.

4.4.1.1 Diversity results

The results have shown that diversity is very important for accuracy of EoCs, since ensembles

with the lowest average loss of predictions between their members have not reached the lowest

generalization error. This can be seen in all Tables 4.2-4.4and Figures 4.1-4.5.

For example, in Table 4.3, the ensemble composed of the highest performing classifiers, i.e.

with parametersC = 5 andγ = 1, did not produce the most performing combination, which

was obtained whenC = 20 and sameγ value. It means that individual performances of

members are one factor that contributes to the overall ensemble performances, but they are not

sufficient. Thus, some diversity is requested to get the highest majority vote performances, as

also pointed out in [66].

However, as we have mentioned before, the relationship between diversity and ensemble accu-

racy may be very complex. In fact, we could see that the results for some diversity measures

were more ambiguous in relation to the ensemble accuracy. This is because, for several en-

sembles, they have assumed the same values, even if the ensembles had different average loss

(i.e. mean error rates) or generalization error (i.e. majority vote error). As examples, we can

relate mainly those focused on the increasing of the variance between the base classifiers out-

puts, such as: Q average, Disagreement, Ambiguity, and Kohavi-Wolpert variance measures,

as shown in Figures 4.1 - 4.5. Above all, these results revealed that the diversity measures

can be categorize into two groups according to their relationship with ensemble accuracy. In
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Table 4.2 Best results obtained for each measure evaluated on the P2 database

Measures C γ Value Average Generalization
Loss(%) Error (%)

Average Loss (↓) 2 100 0.1719 17.19 12.78
Generalization Error (↓) 1 100 0.1274 17.59 12.74
Difficulty (↓) 0.1 25 0 35.06 28.91
Ambiguity (↑) 0.1 25 0.2563 35.06 28.91
Double Fault (↓) 2 100 0.1006 17.19 12.78
Disagreement (↑) 0.1 25 0.3508 35.06 28.91
Kohavi-Wolpert (↑) 0.1 25 0.1719 35.06 28.91
Generalized Diversity (↑) 0.1 25 0.5003 35.06 28.91
Q Average (↓) 0.1 25 0.3100 35.06 28.91
Minimum Margin (↑) 0.1 25 0 35.06 28.91
Average Margin (↑) 2 100 0.6561 17.19 12.78
CI (↓) 2 100 0.6734 17.19 12.78

Table 4.3 Best results obtained for each measure evaluated on the Satimage database

Measures C γ Value Average Generalization
Loss(%) Error (%)

Average Loss 5 1 0.1091 10.91 9.92
Generalization Error 20 1 0.0969 11.06 9.69
Difficulty (↓) 0.1 0.25 0.1586 15.37 15.10
Ambiguity (↑) 200 6e06 0.0800 32.94 29.30
Double Fault (↓) 50 1 0.0816 11.08 9.77
Disagreement (↑) 1000 0.25 0.0787 12.37 10.59
Kohavi-Wolpert (↑) 1000 0.25 0.0386 12.37 10.59
Generalized Diversity (↑) 1000 0.25 0.3181 12.37 10.59
Q Average (↓) 1000 0.25 0.9568 12.37 10.59
Minimum Margin (sum rule) (↑) 50 1e04 0.2000 26.59 26.52
Average Margin (sum rule) (↑) 5 1 0.7818 10.91 9.92
CI (sum rule) (↓) 50 1 0.4622 11.08 9.77
Minimum Margin (max. rule) (↑) 50 0.01 0.2000 26.59 26.52
Average Margin (max. rule) (↑) 5 1 0.7853 10.91 9.92
CI (max. rule) (↓) 50 1 0.4442 11.08 9.77

the first one, we can group diversity measures that were “weakly" related, such as: Qaverage,

Disagreement, Ambiguity, and Kohavi-Wolpert variance measures. On the other hand, Gen-
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Table 4.4 Best results obtained for each measure evaluated on the Letter database

Measures C γ Value Average Generalization
Loss(%) Error (%)

Average Loss 10 1 0.0456 4.56 3.44
Generalization Error 20 1 0.0336 4.58 3.36
Difficulty (↓) 5 1 0.1298 4.71 3.80
Ambiguity (↑) 1 25 0.1685 29.94 24.93
Double Fault (↓) 20 1 0.0275 4.58 3.36
Disagreement (↑) 1 25 0.1247 29.94 24.93
Kohavi-Wolpert (↑) 1 25 0.0611 29.94 24.93
Generalized Diversity (↑) 500 0.25 0.4063 6.02 4.31
Q Average (↓) 2 25 0.9526 28.79 23.78
Minimum Margin (sum rule) (↑) 10 4 -0.2000 4.77 3.47
Average Margin (sum rule)(↑) 10 1 0.9088 4.56 3.44
CI (sum rule) (↓) 20 1 0.1247 4.58 3.36
Minimum Margin (max. rule)(↑) 20 0.25 0 4.69 3.45
Average Margin (max. rule)(↑) 10 1 0.9142 4.56 3.44
CI (max. rule)(↓) 20 1 0.1086 4.58 3.36

eralized Diversity, Difficulty, and Double-Fault measuresbelong to the second group denoted

as “strongly" related. Yet concerning this last group, Double-Fault measure was more related

to the ensemble accuracy, followed by the Difficulty and Generalize Diversity measures which

were slightly less correlated to the ensemble errors. Similar conclusions about the behaviors of

the Double-Fault and Difficulty measures have been also outlined in [69].

4.4.1.2 Margin results

In particular, we have evaluated the main measures providedby the margin theory: minimum

margin, cumulative margins distributions, average margin, andCI. Based on the results, we

could observe some interesting insights on this theory and the majority vote accuracy. For

instance, in the literature, the maximization of margins ontraining data is commonly pointed

out as responsible for decreasing the generalization erroron future test sets [99].

So, in a first moment, we would expect that maximizing the minimum margin for ensembles

should be accompanied with the minimum generalization error. However, the fact is that the
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Figure 4.1 Results for ensembles with the best combinationsof C and γ
parameters on two different perspectives over the P2 database. (a)

Ensembles with the bestC value fixed and varyingγ, and vice-versa in (b).
The vertical dashed lines indicate where the minimal generalization error

was attained.

minimum margin measure have shown great instability. This is because, as it can be seen

in Figure 4.2 (a), the tracking of the maximum minimum margincan be quite difficult, since
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(b) Satimage - fixedγ

Figure 4.2 Some results obtained for ensembles with the bestcombinations
of C and γ parameters on two different perspectives over the Satimage

database. (a) results for ensembles with the best combination by fixing and
varying the C and γ parameters, respectively. (b) results obtained by fixing

the bestγ parameter found and varying C. The vertical dashed lines
indicate where the minimal generalization error was attained.
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(b) Satimage - fixedγ

Figure 4.3 Similar results to that depicted in Figure 4.2 butwith the
second margin definition (Equation 4.17), i.e. with the max.rule. Vertical

dashed lines point out the region in which the optimum generalization error
was achieved.
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(b) Letter - fixedγ

Figure 4.4 Some results obtained for ensembles with the bestcombinations
of C and γ parameters on two different perspectives over the Letter

database. (a) results for ensembles with the best combination by fixing and
varying the C and γ parameters, respectively. (b) results obtained by fixing
the bestγ parameter found and varying C. The vertical dashed lines outline

where the minimal generalization error was achieved.
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Figure 4.5 Similar results to those shown in Figure 4.4 but now with the
second margin definition denoted by Equation 4.17. The vertical dashed

lines indicate where the minimal generalization error was attained.



90

many different values can be achieved even around the best ensemble. In light of this, the greed

maximization of the minimum margin may not be satisfactory for searching the best ensembles.

On the other hand, the results reported with cumulative margins distributions have shown us

such relation. As examples, we have plotted some results involving high and less performing

ensembles over the Satimage problem in Figure 4.6. From these resuts, it can be seen that the

ensembles with the best performances (i.e. composed of the parametersC = 20 andγ = 1

andC = 50 andγ = 1), have actually reached larger margins than ensembles withlower

performances (e.g withC = 1000 andγ = 0.25 pointed out by some diversity measures),

since their margin values are more concentrated at the maximum value (i.e. around 1, which

produces the lowest curves).

In addition, the results with the average margin measure have also demonstrated that classifier

ensembles with large margin values are very performing. In fact, we have observed that this

measure is very stable. Thus, we can particularly assert that is more relevant to concentrate on

the average margin than only on the minimum one.

However, although the average margin over test instances represents an estimate of expected

margin for a classification problem [111], after an analysisof the results, it is clear that this

measure is strictly related to the average loss (mean error rate) of the base classifiers composing

an ensemble and not exactly to its generalization error. To illustrate this, we can see that

the maximum values of average margin correspond to the minimum values of average loss in

Tables 4.2, 4.3, and 4.4, and also in Figures 4.1, 4.2, and 4.4.

Therefore, maximizing the average margin points out the ensembles composed of the strongest

individual members in a given pool. In general, this fact is not much interesting because there

is a great tendency that in a limit of the highest possible individual performances, the base

classifiers will be very similar, with so low diversity that their team may not reach the maximum

majority vote accuracy. As a consequence, despite of most ofthe times the maximum values of

average margins accompany the minimum values of generalization error for some ensembles,

usually those with the maximum average margin and minimum generalization error (majority
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Figure 4.6 Some cumulative margins distributions computedon the Satimage problem.

vote error) in the extreme cases may slight diverge. It can beseen in all results listed in Tables

4.2, 4.3, and 4.4).

Taking this into account, based on two case studies, we have examined more carefully the

relationship between the expected generalization error rate and the margins of the ensembles

with the lowest average loss and generalization error, respectively. In order to achieve this

analysis, we compare their histograms formed by frequencies of margins defined by Equation

4.16 computed for all samples in the test set. They are depicted in Figures 4.7 (a)-(d) for the

Satimage and Letter problems.

Based on these results, it is possible to observe that ensembles with the lowest generalization

error (Figures 4.7 (b) and (d)) have obtained margins with more plurality of values than those

ensembles with the lowest average loss (Figures 4.7 (a) and (c)). Thus, it is clear that while

ensembles with very performing members reach high values ofmargins, ensembles with the

lowest generalization error obtain margins relatively high, but also tend to produce values more



92

(a) Satimage (C = 5, γ = 1) (b) Satimage (C = 20, γ = 1)

(c) Letter (C = 10, γ = 1) (d) Letter (C = 20, γ = 1)

Figure 4.7 Histograms of the margins frequencies from ensembles with the
largest average margin ((a) and (c)), and with the lowest generalization
error ((b) and (d)) from Tables 4.3 and 4.4 for the Satimage and Letter

problems, respectively.

varied. These results have demonstrated how important is a balance between the increasing of

the margins accompanied of some variance between the ensemble members. This explains why

the results obtained with the CI-measure were the most correlated with the ensemble accuracy

regarding all measures tested. Now, after reporting the evaluation of all measures and relating

their results to the ensemble accuracies, we present a discussion on the relationship between

these two theories and their application as objective function to ensemble selection processes.
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4.5 Discussion

In this chapter we have tested various measures for the evaluation of classifier ensembles. In

particular, we could observe that the most appropriate diversity measures to evaluate or select

ensembles are: Generalized Diversity, Difficulty, and Double-Fault measures. The other mea-

sures that regard only the variance of the outputs and not theindividual members performances,

such as Disagreement, Ambiguity, Kohavi-Wolpert, etc havebeen proved to be inadequate for

such tasks. Thus, we can assert that the relationship between most of diversity measures and

accuracy is not so strong. This fact explains why seeking diversity explicitly may be inef-

fective to point out ensembles with optimal generalizationperformance. Besides, it confirms

the Accuracy-Diversity dilemma, which states that highly accurate classifiers cannot be very

diverse [69]. In other words, it means that the base classifiers are strong, but also with some

variance among them.

On the other hand, we could observe that only the increasing of the margins over a dataset may

be an interesting option for selecting classifier ensembles. In contrast, the minimum margin

measure seems not to be stable, and average margins indicated just ensembles composed of the

strongest individual classifiers, but not with the best answers combined.

By analyzing the results we have also seen that the diversitymeasure Double-Fault and the

margin-based measure CI-measure were the two measures morerelated to the generalization

error over all the problems. From this point of view, the relationship between the diversity and

margin theories becomes strong. This is because, the generalization error can be well estimated

by the combination of high performing base classifiers (i.e.with high average margins) and a

relative diversity between them.

Taking this into account, both Double-Fault and CI-measureseem promising to be used as

objective functions for the selection of classifier ensembles. This is probably because strong

classifiers were available and both measures tries to decrease the probability of identical er-

rors. However, as Double-Fault is a pair-wise measure, the cardinality of the final ensemble

selected must be specified in advance. Otherwise, the resulting ensemble will always have the
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minimum number of classifiers, i.e. 2. On the other hand, the CI-measure does not share the

same problem. The boundary provided by the CI-measure seemsto be a good measure for the

selection of ensembles. Besides, it has the advantage that the balance between accuracy and

diversity is explicit: while the average margin is related to the strength of the base classifiers,

the variance of the margins can be seen as diversity represented by the variance between the

base classifiers. In light of all these results, and based on experimental results presented in the

appendix IV, we have decided to employ this measure as part ofour decision module respon-

sible for the selection of ensembles, which is described with our framework presented in next

chapter.



CHAPTER 5

A DYNAMIC OPTIMIZATION APPROACH FOR ADAPTIVE INCREMENTAL

LEARNING IN STATIC ENVIRONMENTS

In the previous chapters we have studied important aspects in order to develop an adaptive

classification system. Regarding the former, we have seen the importance of well tuning and

updating the parameters of classifiers overtime, since theycan vary depending on the data

available. So, the aim was at developing a method able to search for optimum parameters

values, and at the same time efficient to adapt new solution ifneeded. Then, considering that

the use of ensemble of classifiers can overperform single models, especially when its members

are selected and the level of uncertanity is high, we have investigated several measures to

evaluate and select ensemble. The results showed that measures based on the margin theory

are promising to deal and select ensembles, once they regarddirectly the degrees of confidence

of classifiers.

From these standing points, in this chapter we propose a method to perform adaptive incre-

mental learning based on these two principles: (1) to incrementally accommodate new data

by updating models, and (2) to dynamically track new optimumsystem’s parameters for self-

adaptation. Thus, the underlying hypothesis herein is alsoto consider the incremental learning

process as being a dynamic optimization process, in which optimum hypotheses are dynam-

ically tracked, evolved, and combined overtime. Likewise,we have achieved with the SVM

model selection processes carried out overtime in a graduallearning scenario.

In particular, the proposed method relies on a new frameworkincorporating different tech-

niques, such as single incremental Support Vector Machine (ISVM) classifiers, change detec-

tion, dynamic Particle Swarm Optimization (DPSO), and finally dynamic selection of classi-

fier ensembles (EoC). Thus, the goal is to update, evolve and combine multiple heterogeneous

hypotheses (i.e. models with different parameters and knowledge) overtime to maintain the

system’s optimality w.r.t. internal parameters, computational cost, and generalization perfor-
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mance. As mentioned before, the use of ISVM ensembles in thisstudy is justified based on

two main evidences found in literature. First, as the classification success of SVMs does not

depend on the dimensions of the input space, SVM is a robust classifier against the well known

curse of dimensionalitymainly involving small data sets. Therefore, it is very advantageous

for incremental learning situations. Second, SVMs ensembles are employed because they can

often overcome single models’ performances, especially when heterogeneous (in terms of hy-

perparameters values) base classifiers are used and the level of uncertainty is high, i.e. when

only small sample sets are available [116]. We illustrate this concept with an example in Fig-

ure 5.1, which shows that three different optimized solutions, i.e. s1, s2, ands3 can produce

different classifiers’ decision boundaries in (b), (c), and(d) based on a same small training set

of 84 samples. Because of this, the use of multiple solutionsis very interesting, since each op-

timized solution may represent the same problem in different ways. Eventually, the proposed

framework provides contributions on strategies to optimize and overproduce classifiers, as well

as the application of memory-based mechanisms for solving dynamic optimization processes.

This latter is a promising and ongoing research area [37].

In addition, we validate the proposed method and show its efficiency through experiments with

synthetic and real-world databases. Results in single and multiple classifiers configurations are

compared with those obtained with these strategies: SVM optimized with PSO in batch mode,

incremental SVM with parameter values beforehand fixed, twoincremental capable classifiers

(1-NN and Naïve Bayes) widely applied in incremental learning studies. These classifiers are

tested because their performances are considered “no-less" with respect to their batch versions

[87]. An incremental ensemble strategy with optimized parameters and different combination

rules is also employed for comparisons.

As additional purposes, we try to verify if (1) incremental learning with SVM can achieve

similar performances to those obtained in batch mode, (2) the adaptation of system’s parame-

ters over time is actually a dynamic optimization problem and hence important to achieve high

performances, (3) the dynamic selection of ensemble can lead to better results than by simply

combining all pool of classifiers available.
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Figure 5.1 Examples of different classifiers’ decision boundaries in (b), (c),
and (d) trained from three optimized solutions, i.e.s1, s2, and s3 in (a) on the

same small training set of 84 samples.
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The remaining of this chapter is organized as follows. In section 5.1 we introduce the proposed

method for adaptive incremental learning. Experimental results and discussions are reported in

sections 5.2 and 5.3, respectively.

5.1 The Proposed Approach

So far, we have seen that, traditionally, researches on incremental learning regard the classi-

fiers’ parameters setting as a static process, i.e., parameters values are initially set (e.g. based

on standard values or estimated over the first datachunk available), and kept infinitely fixed.

However, optimum hyper-parameters values may shift over the search space during the evolu-

tion of the data. As a consequence, classifiers with obsoleteinternal parameters (mainly those

related to regularization) will disturb and ruin the system’s updating in terms of generalization

power and complexity of models.

The proposed method herein for adaptive incremental learning optimizes, selects, and com-

bines incremental SVM classifiers overtime. More specifically, it is designed to dynamically

point out optimum solutions for sequences of datasetsD(k) by using the best solutions found

so far, or by starting new dynamic optimization processes. As we employ incremental support

vectors machines as our base classifiers and dynamic particle swarm optimization for search-

ing optimum hyper-parameter values, each solutions represents a particle codifying an SVM

hyper-parameter set, e.g.{C, γ}. Change detection mechanisms monitors novelties in the ob-

jective functionF , and indicate how the system must act. The models generated are updated

from incoming data, and then dynamically selected and combined into an ensembleC∗. Details

on the framework of proposed approach are described below.

5.1.1 Framework for Adaptive Incremental Learning (AIL)

Our framework for adaptive incremental learning is composed of five main modules, as shown

in Figure 5.2 and listed in Algorithm 4: change detection, adapted grid-search, dynamic particle

swarm optimization (DPSO), incremental support vector machines, and decision fusion. In

particular, this framework represents many upgrades in relation to our first version introduced
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in [57], such as the use of incremental classifiers, dynamic selection and building of ensembles

from optimized models. Below, details on each module are provided.

Theupgrade_stmandrecall_stmfunctions are respectively responsible for storing and retriev-

ing optimized solutions and important data from the system’s Short Term Memory (STM).∆

represents a set of datasv composed of support vectors and relevant samplesrs selected dur-

ing the training of the final classifier from the best particles
∗. Therefore,∆ = {sv∗ ∪ rs},

wheresv∗ means support vectors obtained from the final incremental modelM∗ trained with

hyper-parameters found by best particles
∗. SV denotes the set of support vectorssv from

incremental models obtained after final training of allP particles from a SwarmS(k − 1), i.e.

SV = {sv j}Pj=1. C represents an ensemble composed of all models (i.e. classifiers)Mi.

So, C = {Mi}Pi=1, whereP is the maximum number of optimized solutions. Finally, for

sake of simplicity, in the equations,D(k) represents the merge of new data and the current

knowledge stored by the method (i.e.∆, as defined above, is composed of relevant samples

and support vectors detected by the best solution found so far).

Algorithm 4 Adaptive Incremental Learning (AIL)

1: Input: A training set of dataD(k).
2: Output: Optimized SVM classifier/ensemble.
3: recall_stm(s∗(k − 1),S(k − 1))
4: if there is aS(k − 1) then
5: Check the preceding best solutions

∗(k − 1) regarding the datasetD(k)
6: if Change_Detection(s∗(k − 1),D(k)) then
7: Activate the adapted grid-search module and get solutions

′(k)
8: if Change_Detection(s′(k),D(k)) then
9: Activate the DPSO module

10: end if
11: end if
12: else
13: Activate the DPSO module
14: end if
15: upgrade_stm(s∗(·),S(·))
16: Train/update/combine the final incremental SVM classifiersfrom incoming dataD(k),

∆(k), andSV .
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Figure 5.2 General framework of the proposed method for incremental
learning with dynamic SVM model selection.∆ represents a set of datasv∗

composed of support vectors and relevant samplesrs selected during the
training of final model M from best particle s

∗. So∆ = {sv∗ ∪ rs}, where
sv∗ means support vectors obtained specifically from final modelM trained
with hyper-parameters found by best particles

∗ and SV = {sv j}Pj=1 denotes
the set of support vectorssv from models obtained after final training of all

P particles from a swarmS(k − 1).

5.1.2 Additional modules

As this new framework is built based on similar components already introduced in our first

framework presented in chapter 3, for sake of simplicity, inthis chapter we outline only the

major modifications added to its original version. Such modifications are mainly related to

the creation of two modules: one for incremental learning with support vector machines and

another to fusion and select classifiers into optimized ensembles. They are both decribed below.

5.1.2.1 Incremental Support Vector Machine Module

In this thesis, we implement an incremental SVM version based on the Syed et al. method

[109] due to three reasons: (1) it focus on the updating of models over sequences of datasets

overtime, (2) this method has produced the best results in this comparative study [35], and (3)

it does not require the tuning of extra-parameters, which may need a careful setting, as it occurs

in [80, 95, 91, 35, 94, 1].
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This latter is important because the setting of extra parameters can be very critical. It is be-

cause they control when samples might be either exchanged among temporary sets or when

learning processes should stop. Moreover, the SVM implementation used in here [18] already

provides mechanisms to accelerate the SVM training throughthe Sequential Minimal Opti-

mization (SMO) technique. Therefore, it demands less computational efforts than traditional

quadratic programming solvers, as shown in [92].

Like in [109], an incremental SVM modelMi(k) is trained on the current training datachunk

D(k) and its historical support vectorssv(k− 1) identified from a previous learning at a given

timek. However, unlike in [109] where only support vectors are stored, our incremental SVM

module also retains additional training samples relying ina “relevant region" which exceeds

the SVM margins in half of their sizes.
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Figure 5.3 Example of regions defined around the SVM margin separating
two classes (circles and squares) in which relevant samplesare selected from.
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It is interesting to note that, even if we fix this region as being half of the margins, the size

of this region varies according to difficulties of classification problems (e.g. complex decision

boundaries, overlapping between classes, etc.) and hyper-parameters selected. Although the

storage of additional samples is not a desirable property inincremental learning algorithms

[93], it is necessary because these additional samples can become support vectors during opti-

mizations of SVM hyper-parameters in the future.

Algorithm 5 The incremental SVM module

1: Input: Current datachunkD(k), relevant samplesrs(k − 1), modelMi(k − 1).
2: Output: SVM modelMi(k − 1) updated.
3: sv =selected_support_vector(Mi(k − 1))
4: working_set = D(k) ∪ sv(k − 1) ∪ rs(k − 1)
5: Mi(k − 1) =train_svm(working_set)

5.1.2.2 Decision Fusion Module

The decision fusion module dynamically selects, and combines incremental classifiers into

ensembles. Our dynamic selection strategy is implemented based on a generalization bound

introduced in [8], which we first studied its application for“static" SVM ensembles in [54].

In this dynamic strategy, only classifiers whose combination minimizes this bound (called here

CI measure) are selected to compose the final ensemble. In particular, this measure is com-

puted asCI = σ(τ)/µ(τ)2, whereσ andµ denotes the variance and the average calculated

over the set of marginsτ from samples of the current training set, respectively.

The margin of a samplexi represents a degree of confidence in its classification. Basically, it

is calculated as the difference between the decision support ϑ assigned to the true classt minus

the highest support estimated for any other classj, i.e. τi = ϑt(xi) − maxj=1,...,c
j 6=t

{ϑj(xi)}.
In here, for a single classifier, the decision support for a classj is denoted as the posterior

probability assigned to it. In the same way, for an ensemble composed of classifiers with output

probabilities, the decision support for a classj is the average over the posterior probabilities

assigned to it by each member.
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The selection process is performed as follows. First of all,the pool of classifiersC(k) gener-

ated fromS(k) are sorted according to their respective individual confidence levels (average

margins). Then, the selection process starts by adding a classifier at time until reach the max-

imum number of classifiers, i.e. number of particlesP . Each time a classifier is added, the

CI selection criterion is recomputed. The best ensemble selectedC∗ is that whoseCI value is

minimal.

Thus, the key idea is to select the ensemble with the strongest, i.e. the highest confidences, and

less correlated classifiers over the current training set. Finally, once the best ensembleC∗ is

selected, they are combined using weighted average voting based on classifiers’ performances.

Although with different criteria, forward searches for best ensembles seem to be very promising

[114].

In order to calibrate the outputs of the SVM in estimates of probabilities, we use the approach

introduced by Wu et al [39], which is implemented in the LIBSVM software [18]. In such

approach, givenk classes of data, for anyx, the goal is to estimatepi = p(y = i|x), i =

1, . . . , k. The estimated pairwise class probabilities for multi-class classification is defined as

ri,j ≈ p(y = i|y = i or j, x), that is, using the implementation of Lin et al. [76]:

ri,j ≈
1

1 + eAf̂+B
, (5.1)

whereA andB are estimated by minimizing the negative log-likelihood function using known

training data and their decision valuesf̂ . Thepi from all ri,j is obtained by solving:

minp
1
2

∑k

i=1

∑

j:j 6=i(rj,ipi − ri,jpj)
2 subject to

∑k

i=1 pi = 1, pi ≥ 0, ∀i (5.2)

Based on this framework, therefore, the proposed method is capable of evolving and accommo-

dating new data by automatically selecting internal hyper-parameters, updating, and combining

incremental SVM classifiers. The experimental protocol andresults obtained are described in

next section.
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5.2 Experimental Protocol

In order to validate the concept of adaptive incremental learning system as well as to show

efficiency of proposed method, the following experimental protocol has been carried out. First

of all, to characterize with more impact the occurrence of population drifts, the original train-

ing sets were divided into small datasets. The total number of datasets and their sizes were

determined based on a minimum amount of samples required foreach class, which was set

to at least 16. The distribution of samples were firstly separated for the class with the minor

number of samples, and then proportionally for the other classes. Such procedure determined

the total number of chunks. Thus, the same original proportion of samples per class was kept

in each datachunk. In other words, it means that if the original problem contains unbalanced

classes, this same real scenario is simulated in this experimental protocol.

Therefore, as in most of the incremental learning approaches, this experimental protocol fo-

cused on incremental learning from datachunks with suitable-size of samples at time, i.e. block

by block, and not one sample at a time, which is called online,or instance by instance learning

[109]. A detailed description of the datasets and number of chunks used are listed in Table 5.1.

We have employed classification problems with different number of features, classes, training

and testing samples. As the proposed method uses a stochastic algorithm, the results represent

averages drawn over 10 replications.

Table 5.1 Specifications on the datasets used in the experiments

Databases Number of Number of Number of Number of Number of
Classes Features chunks Training Samples Test Samples

Adult 2 123 48 3,185 29,376
Circle-in-Square 2 2 120 3,856 10,000
DNA 3 180 29 2,000 1,186
German 2 24 15 800 200
IR-Ship 8 11 8 1,785 760
Nist-Dig 1/2 10 132 36 5,860 60,089/58,646
P2 2 2 120 3,856 10,000
Satimage 6 36 25 4,435 2,000
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5.2.1 Strategies Tested

The following incremental learning strategies were tested:

5.2.1.1 Batch SVM-PSO

In this strategy, the whole original training datasets are used for selecting of optimum SVM

hyper-parameters and training the final model. The hyper-parameter selection process is carried

out with the PSO algorithm. This strategy represents an empirical lower bound computed for

each problem, which allows us to compare the results obtained for incremental strategies with

a batch strategy.

5.2.1.2 Incremental no-less classifiers (1-Nearest Neighbor (1-NN) and Naive Bayes (NB))

These two classifiers were tested because they are widely employed in the incremental learn-

ing/concept drift literatures [119, 30, 87], since they areconsideredno lessincremental learn-

ers, i.e. their results in incremental mode are similar to those obtained in batch mode [87].

5.2.1.3 Incremental SVM (ISVM)

In this approach, an incremental SVM classifier tailored from [109] is updated from successive

datachunksD(k). Its hyper-parameters are firstly tuned with PSO over the first datachunk

D(1), and then kept fixed over all the other datachunks. No relevant samples are kept during

incremental learning process.

5.2.1.4 Optimized Random Aggregation (ORA-DMS)

This method represents a common incremental ensemble approach, more specifically, a ran-

dom aggregation approach as described in section 2.4. In here, it consists of combining SVM

classifiers with optimum hyper-parameters values trained from independent datachunks in a

serial way (i.e. one classifier by datachunk) [119]. Two combination rules were tested with

this scheme: majority and simple average voting. We set the maximum ensemble size to 20.

When the total number is reached, the oldest model is replaced for the new one.
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5.2.1.5 Single Incremental SVM (IS-AIL)

This approach denotes the proposed method in single classifier mode (i.e. only the best solution

found so far is used by the decision fusion module). In other words, when only one incremental

SVM classifier and its respective hyper-parameters are updated from every datachunkD(k).

5.2.1.6 Incremental EoC-DMS Swarm-based (IEoC-AIL)

The proposed approach in EoC mode presented in section 5.1. Therefore, it is employed with

its full capacity, i.e., dynamically updating, selecting,and combining the ISVMs into ensem-

bles.

5.2.2 Experiments Parameters Setting

We have used these parameters setting:

• Optimization Algorithms Parameters: The maximum number of iterations and the swarm

size was set to 100 and 20, respectively. The dimensions of the parameters (C andγ)

search space, where the maximum and minimum values were set to [2−6, 214], [2−15, 210],

respectively. The DPSO topology used was thelbest with λ = 3. We also consider to

stop the optimization if the best value of fitness does not improve over 10 consecutive

iterations.

• Objective Function: Several objective functions have been proposed for searching for

optimum SVM hyper-parameters, e.g. radius margin bound, span bound, etc. [20].

Unfortunately, these measures depend on certain assumptions, e.g. they are related to a

specific kernel or require a separation of the training set without error, which are quite

strong for real-world problems. Thus, the minimization of the generalization error from

ν-cross-validation procedure is a good option. Aν = 5 is used here as suggested in [18].

The results for each strategy are presented in next section.
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5.2.3 Obtained Results

The obtained results are presented in this section as follows. First of all, we examine the per-

formance of each strategy tested by evaluating their generalization errors achieved on each

database. Then, we analyze the data storage required and complexity of models generated.

Finally, we discuss results related to the adaptation of hyperparameters and combination/selec-

tion of ensembles regarding different functions and methods.

5.2.3.1 Performance evaluation

The generalization errors achieved by each strategy testedare reported in Table 5.2. These re-

sults were tested with multiple comparisons using the Kruskal-Wallis nonparametric statistical

test by testing the equality between mean values. The confidence level was set to 95% and the

Dunn-Sidak correction was applied to the critical values. The best results for each classifica-

tion problem and incremental learning strategy are shown inbold. Values underlined indicate

when an incremental strategy was significantly better than the others.

By analyzing the results in this table, we can see that SVM is very promising for incremen-

tal learning, since there is a relevant difference between results on the first datachunks, i.e.

SVM-PSO (D(1)), and results after learning all datachunks. It occurs evenif with its hyper-

parameters were kept fixed with value found onD(1) (ISVM). Most importantly, we could

observe the efficiency of the proposed method as well as conclude that adaptive incremental

learning clearly leads to better performances. That is because the single classifier version of

our proposed method (IS-AIL) has obtained better results than the common ISVM strategy. It

shows the importance of the adaptation of hyper-parametersand of the use of relevant sam-

ples during the incremental learning process. Besides, it could be observed that the proposed

method (IEoC-AIL) has achieved results similar to, and sometimes, even better than SVM-

PSO in batch mode. The latter proves that the dynamic selection and combination of optimum

solutions can actually improve the overall performance of the system. Figures 5.4 (a) and (b)

illustrate these results with two case studies concerning these generalization error results with

the most performing strategies during different incremental learning steps at timesk.
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Table 5.2 Mean and standard deviation of error rates obtained after
learning from all subsets available. The best results concerning the

incremental strategies are shown in bold. Values underlined indicate when
an incremental strategy was significantly better than the others. Results

were computed over mean values draw from 10 replications

Databases Approaches tested
SVM-PSO SVM-PSO(D(1)) 1-NN NB ISVM ORA-MV. ORA-SA. IS-AIL IEoC-AIL

Adult 15.55 (0.06) 24.77 (0.80) 24.06 24.05 23.93 (0.50) 20.07 (1.46)19.29 (1.53) 20.83 (4.34) 20.52 (1.60)
CiS 0.14 (0.03) 11.47 (0.42) 1.02 7.78 3.60 (0.97) 3.91 (0.63) 2.68 (0.45) 1.43 (0.80) 1.35(0.29)
Dna 5.13 (0.18) 21.02 (0.48) 23.69 6.32 8.43 (1.48) 9.74 (0.15) 9.14 (0.20) 4.71(0.25) 4.61(0.27)

German 26.6 (0.21) 30.75 (0.77) 34.50 31.00 29.60 (1.26) 30.05 (0.15) 30.01 (0.01) 28.85 (0.22) 28.15(0.56)
IR-Ship 4.86 (0.35) 14.42 (0.37) 9.21 30.92 7.93 (0.44) 8.63 (0.81) 8.33 (0.73) 5.04 (0.55)4.03(0.30)

NistDig-1 2.75 (0.04) 18.10 (0.32) 3.85 6.92 3.92 (0.40) 8.39 (0.05) 7.93 (0.04) 2.71 (0.04)2.64(0.01)
NistDig-2 6.68 (0.15) 31.96 (0.37) 7.97 13.66 8.42 (0.29) 16.46 (0.08) 16.09 (0.08) 6.33(0.10) 6.27(0.07)

P2 1.64 (0.10) 29.65 (0.23) 2.49 42.38 5.24 (0.14) 13.26 (1.76) 10.95 (1.30) 4.80 (0.90) 3.17(0.56)
Satimage 8.06 (0.13) 22.00 (0.52) 10.95 20.45 22.15 (0.93) 18.09 (0.50) 17.69 (0.63) 8.83 (0.27) 8.14(0.17)
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Moreover, it could be seen that serial incremental ensembleapproaches (i.e. the ORAs strate-

gies, ORA-MV and ORA-SA) performed well especially on noisydata (e.g. as for the Adult

database), although not statistically superior than the proposed method in these tests. By con-

trast, the need of setting a maximum number of classifiers is determinant for the performance

of these methods, since some knowledge may be lost when the oldest classifier is replaced for a

new one. This is a drawback, because the results with a singleincremental learner (ISVM) were

better than these two ensemble approaches for some problems(e.g. IR-Ship, German). These

results indicate that the updating of an existing ISVM classifier might be very advantageous

in relation to only combine batch learners (ISVMvsORAs). The results with the ORA-SA ap-

proaches (ORA-SA and ORA-MV) have shown that the simple average fusion function was

superior than the majority vote rule. Eventually, the classical “non-less" incremental learners

NB and 1-NN have achieved the worst performances. The only exception occurred for the

CiS and P2 databases, where the 1-NN classifier outperformedthe other methods tested, but of

course, with the inconvenience of storing all data.

5.2.3.2 Data storage and complexity of models generated

Concerning now the complexity factor of the ISVM classifiersgenerated, Table 5.3 summarizes

some results regarding the mean number of support vectors stored up to the end of the incre-

mental learning process. By comparing these results, we cannotice that the dynamic adaptation

of the hyper-parameters during the incremental learning process (IS-AIL) seemed to converge

to the results obtained in batch mode (SVM-PSO). In other words, it tends to identify about the

same number of support vectors than when the whole data are available for training.

In contrast, the incremental single SVM classifier strategywith constant hyper-parameters

(ISVM) did not adjust its models as effect as the other SVM-PSO and IS-AIL strategies.

Of course, these results are related to the single classifierstrategies. On the other hand, the

complexity of the ensemble version IEoC-AIL may be relatively higher, once the number of

classifiers is dynamically selected between 1 andP . Thus, in spite of the fact that the proposed

method (IEoC-AIL) supplied remarkable improvements in terms of generalization power, it

can also turn the system more complex.
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Figure 5.4 Case study: Comparison among generalization error results for
batch and the most promising incremental strategies.
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Table 5.3 Mean and standard deviation of number of support vectors
obtained after learning from all subsets available

Databases Approaches tested
Batch - PSO ISVM IS-AIL

Adult 1176.50 (12.54) 1140.40 (57.85) 1178.7 (70.36)
CiS 35.40 (6.47) 24.50 (11.19) 30.10 (6.11)
Dna 628.40 (32.50) 385.90 (55.82) 640.90 (56.49)

German 306.7 (5.94) 735.80 (74.47) 426.20 (55.24)
IR-Ship 320.70 (13.34) 291.10 (5.51) 347 (13.88)
NistDig 898.40 (30.45) 729.00 (21.56) 913 (27.56)

P2 161.40 (26.12) 82.50 (10.90) 113.00 (63.44)
Satimage 1888.00 (93.51) 825.00 (66.92) 1855.30 (167.12)

In addition, from these experiments, it can be seen one of themost attractive advantage of

incremental learning approaches, which is its capability of reducing the training set size. The

results are shown in Table 5.4.

The training size reduction rate was computed as follows: the total database size minus the

total number of updating samples used by the proposed methodin the last incremental learning

step divided by the total database size. It can be seen that the reduction can be very expressive

for some problems, especially with two classes and no overlapping, such as for the CiS prob-

lem. The training size reduction is interesting because it accelerates the updating of classifiers,

mainly for multi-class problems (e.g. for NistDig with a reduction rate of 61.23%).

Additionally in the same Table 5.4, we also report the percentage of relevant samples stored

by the proposed method with respect to the current total number of support vectors stored

and incomming data in the last incremental learning process. We can see that the number of

relevant samples may vary depending on each problem, numberof classes, data distributions,

and density of samples in such relevant regions defined by theincremental module.

To better illustrate this reduction effect, we show comparisons between the number of training

samples used by the proposed method and what should be storedif batch mode was employed

involving two problems in Figure 5.5. It can be noticed that the number of training samples

retained during system’s updating processes can vary depending on the problem and number of
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samples. For example in Figure 5.5 (a), the number of samplesis smaller than in batch mode,

but it seems that the values will always increase. However, as it can be observed in Figure

5.5 (b) for another problem, when more samples are learned after a longer period of time, the

number of samples stored may tend to saturate. Other two examples with the lowest and the

largest number of samples employed are depicted in Figures 5.6 (a) and (b), respectively.

Table 5.4 Training set size reduction (%) by using incremental learning
instead batch mode calculated over the last set (first column). Proportion of

relevant samples (%) inside the last incremental training set used

Datasets Training set size reduction (%) Proportion of relevant samples (%)
Adult 47.28 7.97
CiS 97.86 19.56

DNA 44.59 18.02
German 31.40 12.54
IR-Ship 44.86 44.69
NistDig 61.23 53.59

P2 95.56 16.18
Satimage 19.85 45.71
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Figure 5.5 Comparison between the number of training samples used by
the proposed method and batch mode. The number of training samples

retained during system’s updating processes depends on factors such as the
overlapping between classes, margin width, and density of samples in these

regions.
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Figure 5.6 Comparison between the number of training samples used by
the proposed method and batch mode. The number of training samples

retained during system’s updating processes depends on factors such as the
overlapping between classes, margin width, and density of samples in these

regions.

5.2.3.3 On the system parameters’ dynamism

These experiments also confirm empirically our underlying hypothesis about the importance

of concerning the incremental learning process as a dynamicoptimization problem. In order to

demonstrate this, we have depicted some results to exhibit the shifting and tracking of optimum

solutions over the search space given sequences of datasetsD(·). Through a case study in

Figure 5.7, we show that the hyper-parameters selection process represents actually a dynamic

optimization problem of type III.

In this example, the search space covered by optimum solutions (denoted here as circles) is

depicted for each datasetD(k) from the Satimage database in one replication. The different

sizes of circles represent how the fitness varied between values of 14.38% and 4.56%. The

symbol “*" indicates a best solution position found when thewhole training data was used in

the searching process.

It can be observed that optimum solutionss(k)∗ can vary in both fitness and hyper-parameters

values depending on incoming data at different incrementallearning steps. For instance, they
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can be located in a region for a given intervals of datachunks, e.g. betweenD(1) andD(7),

and then move to others, e.g. forD(8) andD(17), and finally forD(25). This fact, therefore,

demonstrates that this problem must be dealt as a dynamic optimization problem. It also ex-

plains why approaches with fixed parameters (i.e. onD(1)) might perform in a sub-optimum

way, as shown in Table 5.2 when IS-AIL is compared with ISVM).
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Figure 5.7 Trajectory covered by the best solution found (circles) from
incremental steps for each new datasetD(k). The circles’ sizes illustrate
how the solutions’ fitness can vary. Symbol “*" depicts a bestsolution
position found if the whole training data is used at once (batch mode).

Additionally, Figures 5.8 (a) and (b) report details on which module has pointed out these

solutions for each datasetD(k) andC andγ hyper-parameters, respectively. It can be seen

that in most of times, the best values for the hyper-parameters have changed and tracked by the

DPSO module. By contrast, in more stable cases, optimized solutions stored in the system’s

memory could be profited for new learning process by being kept (BK) or selected from the

adapted grid-search (AG) module. The frequencies of the AILmodules’ activations are listed in
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Table 5.5. In these experiments, the dynamic optimization module has produced more often the

final hyper-parameter values solution, followed by searches over previous solutions (adapted

grid search or keeping the best one).
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each datasetD(k), C, and γ hyper-parameters when using IS-AIL.
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Table 5.5 Frequencies (%) of AIL modules’ activations over all the training datasets

Datasets Best Kept Adapted Grid DPSO
Adult 28.13 15.42 56.45
CiS 7.33 11.59 81.08

DNA 16.90 8.97 74.13
German 12.00 18.66 69.34
IR-Ship 24.45 10.47 65.08
NistDig 6.67 10.56 82.77

P2 9.66 15.09 75.25
Satimage 17.60 10.80 71.60

5.2.3.4 On the selection and fusion of solutions into ensembles

Turning now the focus on the dynamic selection of ensemble issue. So far in Table 5.2 we have

seen that combining solutions improves the overall system’s performance. In this section, the

effect of our decision fusion module devoted to this task is outlined. First, Figure 5.9 depicts

a case study with the performances and cardinalities of the proposed method in single and

ensemble mode over a sequence of datachunksD(k) from one replication.

Based on these results, and others already listed in Table 5.2, it is first demonstrated that the

dynamic selection of hyper-parameters and ensembles is very advantageous to provide stability

during the incremental learning process and hence to achieve higher performances. Then, in

Figures 5.10 and 5.11, we can see some classifiers selected and original pools distributed over

the search space for datasets outlined by squares in (a).

We can observe that ensembles with different cardinalitieswere selected for each timek, when

either the optimized swarmS(k) stays in the same position 5.10 or moves over the search space

5.11. That will depend on the problem complexity and currentdata. In the appendix V, we

present the whole sequence of swarms for each datasetD(k) and complementary results that

confirm these same conclusions regarding another case study.

Table 5.6 reports some results on the final cardinalities obtained thereafter the last incremen-

tal learning processes. In addition, we also report the variations of cardinalities over all the

datasets and replications for three different databases inFigure 5.12.
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From these results, we can see that the number of classifiers selected in the ensemble varied

around the mean size of the original pool of 20 members. However, more variation among other

datachunks were noticed, what indicates that the dynamic selection of classifiers in incremental

learning mode is an open issue worth of deeper investigations.
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Figure 5.10 Examples of classifiers selected and their original pools
distributed over the search space for datachunks outlined by the first square

(left side) in Figure 5.9. The entire sequence of swarms for each dataset
D(k) is presented in the appendix V.
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Figure 5.12 Results of EoC cardinalities obtained for each datasetD(k)
over 10 replications over different databases.
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Table 5.6 EoC-AIL cardinality after dynamic ensemble selection on the
last learning step

Dataset Mean (Std) Median
Adult 13.40 (5.72) 15
CiS 13.00 (2.83) 12

DNA 7.60 (4.62) 8
German 10.60 (5.80) 11
IR-Ship 11.00(6.46) 13
NistDig 8.80 (4.94) 11

P2 10.60 (6.98) 10
Satimage 9.80 (6.12) 8

Ending, Table 5.7 lists some results obtained for differentconfigurations investigated when

building our decision fusion module. Three combination functions were employed (i.e. major-

ity vote, simple average, and weighted vote), and also threeselection criteria, such as none at

all (all P classifiers are combined), half-best (theP/2 best classifiers), and theCI introduced in

section 5.1.2.2). By analyzing these results, as occurred for the ORAs strategies in Table 5.2,

the simple average combination function achieved better results than the majority vote rule and

similar to, or slightly worse than, the weighted vote applied to dynamically selected ensembles.

Moreover, these results illustrate the importance of dynamic selection of ensembles, since it

improved the results in relation to whole ensembles combined with majority voting. This is

possible because they ignore classifiers that could insert some bias in the ensemble’s decision

and disturb their performances.

Table 5.7 Mean errors obtained with IEoC-AIL concerning different
combination functions and ensemble selection rules after learning from all

series of datachunks available

Databases Approaches
Majority vote Simple Average Weighted vote

All P half best All P half best CI CI
Adult 24.03 (0.16) 24.02 (0.15) 23.62 (1.39) 21.58 (1.54) 20.52 (1.71) 20.52 (1.60)
CiS 2.76 (1.49) 2.64 (1.47) 2.36 (1.18) 2.35 (1.19) 2.26 (1.12) 1.35 (0.29)
Dna 4.87 (0.22) 4.71 (0.26) 4.72 (0.26) 4.65 (0.29) 4.61 (0.27) 4.61 (0.27)

German 30.00(0.24) 30.00 (0.24) 30.05 (0.15) 29.95 (0.49) 28.95 (0.36) 28.15 (0.56)
IR-Ship 4.17 (0.15) 4.20 (0.13) 4.12 (0.26) 4.07 (0.23) 4.03 (0.32) 4.03 (0.30)

NistDig - 1 2.65 (0.04) 2.65 (0.04) 2.65 (0.05) 2.65 (0.04) 2.64 (0.03) 2.64 (0.01)
NistDig - 2 6.28 (0.60) 6.27 (0.09) 6.27 (0.07) 6.27 (0.07) 6.27 (0.07) 6.27 (0.07)

P2 8.76 (7.43) 6.58 (5.12) 5.45 (4.32) 4.94 (3.41) 4.18 (1.56) 3.17 (0.56)
Satimage 8.34 (0.19) 8.31 (0.22) 8.18 (0.16) 8.17 (0.16) 8.14 (0.18) 8.14 (0.17)



122

5.3 Discussion

We proposed a modular dynamic optimization approach to perform adaptive incremental learn-

ing. The proposed method generates classifiers from optimumregions of parameters search

space, and then dynamically selects ensembles based on the classifiers’ confidence levels to

improve the overall results. Different from classical methods considering the incremental sys-

tem’s parameters setting in a static way, we showed that thisprocess should be treated as a

dynamic optimization process. This is because their optimum parameters values may shift

over the search space depending on incoming data.

Through experiments on different synthetic and real-word databases, we empirically demon-

strated that the dynamic optimization of an incremental classification system could improve its

performances, so that they could overcome classifiers without adaptation and other classical

methods. Therefore, the performance of a classification system depends further than on updat-

ing of existing models only, but also on adapting its internal parameters. Furthermore, it was

seen that the application of the latter with a multiple classifier approach becomes the classifi-

cation system more flexible and, at the same time, robust for performing incremental learning

and dealing with population drifts.



CONCLUSION

This thesis focused on the implementation of a classification system to perform adaptive in-

cremental learning. Towards the building of the system, ourefforts were concentrated on the

problems of efficiently accommodation new data, adaptationof internal system’s parameters,

and combination of multiple hypotheses. We have seen that solving these problems is crucial

to increase the overall performance of the system.

In our first investigation, we have seen that a well tuning andupdating of classifier’s parameters

with respect to new data is very important to reach high performance overtime. In order to

solve this problem, two main challenges were involved: (1) to overcome common difficulties

involving optimization processes, such as the presence of multi-modality or discontinuities

in the parameter search space, and (2) to quickly identify optimum solutions which fit both

historical and new incoming data. To cope with these two issues, the SVM model selection

problem was undertaken as a dynamic optimization problem which depends on available data.

In particular, it was shown that if one intends to build efficient SVM classifiers from different,

gradual, or serial source of data, the best way is to considerthe model selection process as

a dynamic process which can evolve, change, and hence require different solutions overtime

depending on the knowledge available about the problem and uncertainties in the data.

In particular, we introduced a Particle Swarm Optimizationbased framework which combines

the power of the swarm intelligence theory with the conventional grid-search method to pro-

gressively identify and sort out potential solutions for gradually updated training datasets. The

idea was to obtain optimal solutions via re-evaluations of previous solutions (adapted grid-

search) or via new dynamic re-optimization processes (dynamic particle swarm optimization).

The relevance of the proposed method was confirmed through experiments conducted on six

databases. Briefly, the results have shown that: (1) if PSO isapplied sequentially over datasets

as a whole optimization process (Chained PSO) with the purpose of saving computational time,

the resulting optimized solutions may stay trapped in localminima after successive hyper-

parameter model selection processes. On the other hand, (2)although full optimization pro-
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cesses with PSO (Full PSO strategy) constitute an efficient way to achieve good results, they

are very time consuming, particularly when applied to each new dataset. (3) The performance

of DMS was very similar to full optimization processes, but less computationally expensive,

mainly due to the use of the dynamic optimization techniques. Thus, the experimental results

demonstrate that the proposed method outperforms the traditional approaches tested against

it while saving considerable computational time. However,even if the optimization of a sin-

gle classifier is important to increase its performances, the combination of different members

can improve the overall performance of a classification system. Mainly when the members

composing the ensemble are especially selected, which makes them still more accurate.

Taking this into account, the evaluation and selection of such classifiers depend on the choice of

an adequate objective function. Therefore, in order to better understand and employ classifier

ensembles for composing our adaptive incremental system inthe context of this thesis, the

investigation of measures to perform such tasks proceeded this work. We have empirically

analyzed several objective functions for the evaluation and so the selection of ensembles of

classifiers. In order to achieve this, we empirically investigated classifiers fusion through the

relationship between two theories related to ensemble’s success, i.e. diversity measures and

margin theory, with ensemble accuracy. Most importantly, they revealed valuable insights on

how these two theories can influence each other and showed us how confidence based measures

can be more interesting than diversity measures for the selection of classifier ensembles.

Finally, we proposed a modular dynamic optimization approach to perform adaptive incremen-

tal learning. It was implemented based on these two principles: to incrementally accommodate

new data by updating models and to dynamically track new optimum system’s parameters for

self-adaptation. Thus, the goal was to overcome a problem that occurs when performing in-

cremental learning, which is the obsoleting of best set of classification system’s parameters

according to incoming data. The proposed method relied on a new framework based on the

ideas and components mentioned above. The use of a modified version of incremental Sup-

port Vector Machine (ISVM) classifier and a dynamic strategyfor the selection of classifier

ensembles were the main innovations in relation to our base framework. In particular, from
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this framework, the system’s optimality in respect to internal parameters, computational cost,

and generalization performance could be maintained through the generation of classifiers from

optimum regions of parameters search space and the dynamic selection of ensembles based on

the classifiers’ confidence levels.

As a result, adaptations are realized in two levels, furtherthan by the incremental learning

aspect only, but also in the levels of base model parameters and decision fusion. Thus, un-

like classical methods considering the incremental system’s parameters setting in a static way,

we showed that this process should be treated as a dynamic optimization process. This is be-

cause their optimum parameters values may shift over the search space depending on incoming

data. As additional contributions, we provided insights onstrategies to optimize and select

classifiers, on the use of memory-based mechanisms, and methods for dynamic optimization

processes.

The proposed approach was validated and showed its efficiency through experiments with syn-

thetic and real-world databases, e.g. involving handwritten digits, multisensor remote-sensing

images, forward-looking infra-red ship images, etc. Results in single and multiple classifiers

configurations demonstrated that the proposed approach actually outperformed classification

methods often used in incremental learning scenarios. Moreover, they also demonstrated that

the dynamic optimization of an incremental classification system could improve its perfor-

mances, so that they could overcome classifiers without adaptation and other classical meth-

ods. Therefore, the performance of a classification system depends further than on updating

of existing models only, but also on adapting its internal parameters. Furthermore, we have

observed that the application of the multiple classifier approach becomes the classification sys-

tem more flexible and, at the same time, robust for performingincremental learning and dealing

with population drifts.
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Future Works

The results obtained in this thesis were very encouraging and also provide strong foundation

for future works. However, some issues were not investigated due to time constraints. Thus,

probing deeper, the next stage and future directions of thisresearch might involve:

• Determining new strategies for making the system adaptableto real drifts. In this case,

the design of mechanisms to “forget" samples from the system’s memory must be con-

sidered to discard old samples that be conflicting with new concepts.

• Carrying on with population drifts situations, but using semi-supervised learning to over-

come the dependency of labeled data. This direction requires the developing and embed-

ding of an approach in the framework to label the data before these be used by the other

modules.

• Investigating new strategies for the selection of relevantsamples and ensembles. The use

of information from different timesk could be also employed.

• Creating other strategies for better managing the system’smemory. As an example,

instead of using only a short term memory, the implementation of an additional long

term memory could reduce even more the time for searching fornew solutions in those

situations in which data changes become recurrent.

Therefore, by following these directions the system surelywill be even more versatile.



APPENDIX I

DATABASES

In this appendix we describe more details about some synthetic and real-world databases em-

ployed in this thesis.

1 Synthetic Problems

Synthetic problems are useful tools to evaluate learning algorithms. In our experiments, we

have used two synthetic problems already employed in the machine learning literature:

• Circle-in-Square (CiS)[14]: This problem consists of two classes. The decision bound-

ary is nonlinear, and the samples are uniformly distributedbetween the range of 0 to 1.

One class is represented by a circle inside a square, while the second class is formed of

data from the area outside the circle (see Figure I.1). The area of the circle is equal to

half of the square [14].

Figure I.1 Illustration of the Circle-in-Square problem.

• P2 [115]: The P2 problem also consists of two classes (I andII). Each decision region

is delimited by one or more of the four simple polynomial and trigonometric functions
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(i.e. Eq1−4(x)) belongs to one of two classes (see Figure I.2). We consider the same

modification onEq4(x) suggested in [45], so that the classes have the same area without

overlapping. The samples are uniformly distributed between ranges of 0 to 10, and then

normalized between 0 and 1.

Eq1(x) = 2× sin(x) + 5

Eq2(x) = (x− 2)2 + 1

Eq3(x) = −0.1x2 + 0.6× sin(4x) + 8

Eq4(x) = (x−10)2

2
+ 7.902

(I.1)

Figure I.2 Illustration of the P2 problem.

The data generated were normalized into a range of [0,1] according to min-max technique

defined by Equation I.2.a′
i andai are normalized and non-normalized values of theith feature;

mini andmaxi are the minimum and maximum value of theith feature in the entire dataset.

a′
i =

ai −mini

maxi −mini

(I.2)

As in the literature, each classωi is represented by 50% of the samples, that is,P (ωi) = 0.5.
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2 Real-world Problems

In this section we summarize two special real-world problems employed in the thesis: NIST-

SD19 and the IR-SHIP.

• NIST-SD19: It is one of the most popular real-world databases used to evaluate hand-

written digit recognition methods. Basically, it is composed of images of handwritten

samples forms (hsf) from 0 to 9 organized in eight series. In the literature, it is com-

monly divided into 3 sets hsf-0123, hsf-4, and hsf-7, for training, validation, and test

respectively. Table I.1 depicts the number of samples for each digit class in the test set,

where the total number of samples is 60,089. In this work, themaximum number of

samples used for training is 5860 (586 samples per class).

Figure I.3 Examples of isolated digits from the NIST-DIG database [85].

The features set extracted from the images of isolated digits were the same suggested by

Oliveira et al. [85]. Basically, the features are a mixture of concavity, contour and surface

of characters, where the final feature vector is composed of 132 components normalized

between 0 and 1. Oliveira et al. have obtained with this features set a recognition rate of
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99.13% on the test set samples from hsf-7 using a Multilayer Perceptron Neural Network

and a training set of 195,000 samples from hsf-0123.

Table I.1 Number of samples for each digit class in the test set (hsf-7)- NIST-SD19

Class 0 1 2 3 4 5 6 7 8 9
# 5,893 6,567 5,967 6,036 5,873 5,684 5,900 6,254 5,889 5,813

• IR-SHIP: The IR-SHIP database is a military database that consist of2545 Forward

Looking Infra-Red (FLIR) images of eight different classesof ships. The images were

provided by the U.S. Naval Weapons Center and Ford AerospaceCorporation. Images

and descriptions of the eight classes of ship are depicted inFigure I.4. In particular,

we use the same features set employed by Park and Sklansky [89], which implies in 11

attributes for each FLIR image. In particular, the first seven attributes represent moments

and the others four remaining denoted parameters from an auto regressive model. More

information about this database can be encountered in [51].Table I.2 lists the total

number of samples for each class. In here, we divided the entire original dataset into

80% and 20% samples for training and test, respectively.

Table I.2 Number of samples for each class in the IR-SHIP database

Class 1 2 3 4 5 6 7 8
# 340 455 186 490 348 279 239 208
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1 − Destroyer 2 − Container

3 − Civilian Freighter 4 − Auxiliary Oil Replenishment

5 − Lauding Assault Tanker 6 − Frigate

7 − Cruiser 8 − Destroyer Guided Missile

Figure I.4 Examples of FIR images from the IR-SHIP database [51].



APPENDIX II

ADDITIONAL DYNAMIC MODEL SELECTION RESULTS

In this appendix we summarize some additional results related to our PSO-based framework

for the dynamic selection of SVM models over five different databases. A brief description on

the databases is listed in Table II.1.

Segment, Splice, Mushrooms, and Usps are also databases from [4]. The Segment database

contains instances randomly drawn from outdoor images. Each instance is a 3x3 region, where

each region represents a class, such as: brickface, sky, foliage, etc. The Splice database is

composed of samples of DNA sequences, where the problem is toclassify them into IE (in-

tron/exon) or EI (exon/intron) boundaries. The Mushrooms database includes descriptions of

samples corresponding to 23 species of gilled mushrooms. Each species is identified as defi-

nitely edible or poisonous. The Usps database is composed ofimages of isolated digits with

300 pixels/in in 8-bit gray scale on a high-quality flat bed digitizer. Finally, the Svmguide

problem is a two-class database that involves an astroparticle application [18].

The results are presented according to the same criteria investigated in chapter 3. First, we

report the results involving generalization error rates, number of support vector, and computa-

tional time required in Tables II.2, II.3, and II.4, respectively. Then, the average of frequencies

that each module was employed to identify the final solution are depicted in Figure II.1.

Table II.1 Databases’ descriptions.

Database Number of Number of Number of Number of Number of
Classes Features Training Samples Sets Test Samples

Segment 7 19 1,848 12 462
Svmguide 2 4 3,089 20 4,000
Splice 2 60 1,000 15 2,175
Mushrooms 2 112 6,498 24 1,626
Usps 10 256 7,291 17 2,007
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Table II.2 Mean error rates and standard deviation values over 10
replications when the size of the dataset attained the size of the original

training set. The best results for each data set are shown in bold.

Database GS 1st-GS FPSO CPSO DMS
Segment 2.81 4.33 2.78 (0.52) 4.87 (2.04) 2.80 (0.9)
Svmguide 13.15 50 3.10 (0.01) 3.97 (0.02) 3.11 (0.07)
Splice 12.38 12.38 10.40 (0.92) 11.9 (2.10) 10.45 (1.10)
Mushrooms 0.00 0.00 0.00 0.00 0.00
Usps 10.16 10.21 6.44 (0.15) 8.41 (0.19) 6.35 (0.08)

Table II.3 Mean of support vectors and standard deviation values
obtained over 10 replications when the size of the dataset attained the size of
the original training set. The best results for each data setare shown in bold.

Database GS 1st-GS FPSO CPSO DMS
Segment 251 298 218.30 (79.39) 381.3 (135.85) 281.7 (72.75)
Svmguide 2801 3003 245.50 (7.90) 254.5 (3.44) 246.8 (5.37)
Splice 959 959 499.80 (176.85) 326.10 (32.17) 444.50 (22.39)
Mushrooms 1102 1102 240.80 (89.15) 245.10 (30.48) 244.30 (38.21)
Usps 4200 4199 1115.20 (91.74) 1702.20 (164.70) 1152.50 (58.40)

Table II.4 Mean computational time spent (hh:mm:ss) for model selection
processes for the entire sequences of datasets with the mostpromising

strategies. Results for the FPSO strategy over the entire databases
(FPSO-all data) are also reported.

Database FPSO-all data FPSO CPSO DMS
Segment 00:01:51 (00:00:38) 00:04:15 (00:00:44) 00:02:11 (00:00:31) 00:00:38 (00:00:43)
Svmguide 00:43:24 (00:33:39) 01:44:03 (00:38:15) 01:10:12 (00:17:43)00:41:30 (00:39:07)
Splice 00:00:39 (00:00:12) 00:01:35 (00:00:20) 00:01:35 (00:00:15)00:00:51 (00:00:23)
Mushrooms 00:51:40 (00:07:37) 02:02:21 (00:08:53) 01:37:23 (00:03:17) 00:01:39 (00:01:27)
Usps 06:10:53 (02:14:33) 14:13:41 (03:05:37) 12:35:26 (03:28:36) 05:31:42 (02:46:18)
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Figure II.1 Average of frequencies which indicates how manytimes each
module was responsible for pointing out the final solution.



APPENDIX III

BIAS-VARIANCE DECOMPOSITION OF ERROR RESULTS

In this appendix we depict some results related to the Bias-Variance Decomposition of the

Error theory for ensemble of classifiers introduced by Domingos [36]. We have used two

classification problems in the experiments: a synthetic one(P2) and another with real-world

data (Satimage).

From this theory, we could observe that the lowest bias corresponds not always to the lowest

expected average loss. In fact, the best ensembles have obtained a higher variance, which

demonstrates that some variations among the ensemble members is important to achieve better

performances. Results illustrating this fact are listed inTables III.1 and III.2. Therefore, a

balance between bias-variance is indeed crucial for developing performing ensembles.

In addition, the Domingos’s decomposition of the variance component into unbiased and biased

variances allows to analyze the cases in which every measureseems to provide the same result

with different ensembles. For instance, in Table III.1 we have two different ensembles, i.e. with

C = 5 andC = 10, that present similar generalization errors. In this case,through this theory

we can see that the former ensemble withC = 5 andγ = 100 should be diagnosticated as better

than the second one because it has a slightly higher unbiasedvariance. In other words, both

ensembles provided correct answers, but the first one provided with more variated opinions

regarding the same dataset.

Furthermore, as demonstrated in [115, 116], we have also observed that the value of theC

andγ hyperparameters can actually determine different regionsof transition with high bias

or stabilized ones for both two-classes and multi-classes problems. Some examples of these

regions can be seen in Figures III.1 and III.2. Moreover, we can also see the influence of

the hyperparameter values when composing ensembles. For example, for the P2 problem,

while lower values of regularization (i.e. forC) results almost in no learning (Figure III.1(a)),

the increasing of such parameters notably changes the behavior of the ensembles (Figures
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III.1(b)-III.1(d)). The same observations can be outlinedfor the real-word multi-class database,

Satimage, in Figures III.2(a)-III.2(d).

Table III.1 P2 problem

C γ Loss Bias Net Variance Unbiased Variance Biased Variance
2 100 0.171912 0.1278 0.044517 0.070218 0.025698
5 100 0.171568 0.1295 0.042071 0.068568 0.026497
10 100 0.171568 0.1295 0.042068 0.068468 0.026400
20 100 0.172191 0.130400 0.041791 0.069552 0.027764

Table III.2 Satimage problem

C γ Loss Bias Net Variance Unbiased Variance Biased Variance
5 1 0.109076 0.099174 0.009902 0.022404 0.014455
10 1 0.109572 0.098422 0.011149 0.024493 0.015357
20 1 0.110578 0.09692 0.013659 0.026521 0.014831
50 1 0.110834 0.097671 0.013163 0.026702 0.015582

Table III.3 Letter problem

C γ Loss Bias Net Variance Unbiased Variance Biased Variance
10 1 0.045618 0.034444 0.011173 0.017773 0.009596
20 1 0.045849 0.033556 0.012293 0.018880 0.009698
50 1 0.046587 0.035556 0.011031 0.018520 0.010676
100 1 0.046680 0.035333 0.011347 0.018702 0.010582
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(a) P2 - fixedC = 0.01
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(b) P2 - fixedC = 0.1
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(c) P2 - fixedC = 2
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(d) P2 - fixedC = 1000

Figure III.1 Some results concerning the bias-variance decomposition of
error theory with ensembles over the P2 database. The vertical dashed lines

indicates where the minimal generalization error is attained.
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(a) Satimage - fixedC = 0.01
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(b) Satimage - fixedC = 5
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(c) Satimage - fixedC = 20
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(d) Satimage - fixedC = 500

Figure III.2 Some results concerning the bias-variance decomposition of
error theory with ensembles over the Satimage database. Thevertical

dashed lines indicates where the minimal generalization error is attained.
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(a) Letter - fixedC = 0.01
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(b) Letter - fixedC = 5
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Figure III.3 Some results concerning the bias-variance decomposition of
error theory with ensembles over the Letter database. The vertical dashed

lines indicates where the minimal generalization error is attained.



APPENDIX IV

EXPERIMENTS WITH CLASSIFIER ENSEMBLE SELECTION

The goal of this appendix is to present some results related to the selection of classifier ensem-

bles using the margin-based measure and the ensemble accuracy studied in chapter 4.

In order to achieve this, we employ a common strategy called:overproduce and choose [42].

In this strategy, several classifiers are created by some ensemble generation method and then a

selection process is applied to choose the best ensemble. The aim is, therefore, to (1) improve

the overall performance or/and to (2) decrease the complexity of the ensemble by reducing the

number of members.

In here, as we are interested in obtaining strong classifierswith low bias, we considered the

adjustment of parameters before creating our ensembles. Thus, this experimental protocol can

be summarized as follows. First, the parameters of a base classifier were set based on a grid-

search. In other words, given a set of parameters and the original training set, a five-fold cross

validation was employed to find the best parameter values fora base classifier.

Second, once the best parameters have been defined, individual classifiers were built based on

the Bagging ensemble generation method [5]. In this method,ensemble members are trained

from L subsets composed of bootstrapped samples from the originaltraining data. Therefore,

if the original training set hasn examples, a bootstrap replicate of it is constructed by taking

n samples with replacement from it, where each example has a probability of 1/n of being

selected at each turn.

Third, once that the pool of base classifiers were already generated, the minimization of the

ensemble generalization error rate and the CI-measure weretested as objective functions for the

selection process. The margins used by the CI-measure were computed according to Equation

4.17. In addition, our ensemble selection process was implemented as an optimization process,

which employs a genetic algorithm (GA) and an optimization set of samples. Finally, thereafter

the best ensembles were selected for each database, they were tested on the respective test sets.
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The description of each database used is listed in Table IV.1. As Naive Bayes, KNN and SVM

with RBF kernel were employed as base classifiers, we also indicate the best values found for

K, C andγ in the same table for each database. The values tested for theSVM hyperparameters

are described in chapter 4, and forK were 1,3,5. The final results represent averages over 30

replications.

Table IV.1 Information on the databases

Database Number of Number of Training Optimization Test Best Best
Classes Features Set size Set size Set sizeK C,γ

P2 2 2 100 100 10,000 1 10,100
Satimage 6 36 3,104 1,331 2,000 5 10,1
Letter 7 19 770 770 770 1 20,1

For each database, ensembles composed of 50 members were built through the bagging method,

as previously explained. In addition, the genetic algorithm parameters were set as listed in Ta-

ble IV.2.

Table IV.2 Genetic algorithm parameter setting

Parameter Value
Population size 128

Chromosome size (L) 50
Probability of crossover 0.8
Probability of mutation 1/L, i.e. 0.02

As each gene of a chromosome represents a classifier, if all bits were selected, all classifiers

composed the ensemble. The operations of crossover and mutation were implemented based

on the one-point crossover and bit-flip mutation, respectively. The results obtained and the

conclusions drawn from these experiments are presented in the next section.

1 Results

The results obtained in this experiment are reported for each database, single classifiers (K-

NN, NB, and SVM) in Tables IV.3, IV.5, IV.7. Results for the original pool of classifiers and

objective function employed are reported in Tables IV.4, IV.6, IV.8. The best results for each
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database are in bold and underlined if they are significantlybetter than the others. Additionally,

Figures IV.1, IV.2, IV.3 depict the generalization error rates and cardinalities achieved by each

ensemble type and objective function.

From these results, we can see that in general the minimization of the CI-measure is very

promising for selection purposes because it selected very performing ensembles, and some-

times even better than those ensembles selected through theminimization of the generalization

error. In addition, regarding the complexity of the ensembles, this measure also selected en-

sembles with the lowest cardinalities concerning all typesof classifier ensembles tested, i.e

with NB, KNN, or even SVMs. Thus, it seems to be very advantageous for both accuracy

improvement and ensemble reduction size.

Table IV.3 Obtained results with a single classifier on the P2problem.

Classifier Generalization Error (%)
K-NN 14.01
NB 28.80

SVM 13.90

Table IV.4 Obtained results with ensemble of classifiers on the P2 problem.

Original
EoC

EoC Average Loss (%) Generalization Error (%)
KNN 17.38 13.70
NB 30.50 26.29

SVM 17.23 13.04

Obj. Func. EoC Average Loss (%) Generalization Error (%) Cardinality
Gen.
Error
(↓)

KNN 17.63 (0.30) 13.53 (0.63) 17
NB 30.79 (0.49) 25.75 (1.25) 15

SVM 18.86 (0.88) 12.53 (0.46) 21

CI (↓)
KNN 17.39 (0.20) 13.52 (0.38) 9
NB 30.58 (0.39) 25.93 (1.10) 12

SVM 17.40 (0.10) 12.46(0.20) 8
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Table IV.5 Obtained results with a single classifier on the Satimage problem.

Classifier Generalization Error (%)
K-NN 10.70
NB 18.95

SVM 9.55

Table IV.6 Obtained results on the Satimage problem.

Original
EoC

EoC Average Loss (%) Generalization Error (%)
KNN 12.14 10.40
NB 18.97 18.70

SVM 10.23 9.40

Obj. Func. EoC Average Loss (%) Generalization Error (%) Cardinality
Gen.
Error
(↓)

KNN 12.03 (0.05) 10.40 (0.17) 19
NB 18.82 (0.08) 18.55 (0.13) 16

SVM 10.26 (0.05) 9.26(0.14) 19

CI (↓)
KNN 11.94 (0.02) 10.26 (0.06) 15
NB 18.66 (0.03) 18.31 (0.02) 8

SVM 10.24 (0.00) 9.24(0.00) 9

Table IV.7 Obtained results with a single classifier on the Letter problem.

Classifier Generalization Error (%)
K-NN 5.46
NB 30.90

SVM 3.26

Table IV.8 Obtained results on the Letter problem.

Original
EoC

EoC Average Loss (%) Generalization Error (%)
KNN 7.19 5.45
NB 31.40 30.54

SVM 4.30 3.08

Obj. Func. EoC Average Loss (%) Generalization Error (%) Cardinality
Gen.
Error
(↓)

KNN 7.17 (0.04) 5.47 (0.07) 16
NB 31.28 (0.07) 30.15 (0.18) 20

SVM 4.27 (0.02) 3.04(0.07) 24

CI (↓)
KNN 7.14 (0.00) 5.45 (0.04) 19
NB 30.96 (0.03) 29.82 (0.12) 14

SVM 4.26 (0.01) 3.06(0.03) 20
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Figure IV.1 Generalization error rates and cardinalities obtained after
selection processes for the P2 problem.
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Figure IV.2 Generalization error rates and cardinalities obtained after
selection processes for the Satimage problem.
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Figure IV.3 Generalization error rates and cardinalities obtained after
selection processes for the Letter problem.



APPENDIX V

ADDITIONAL ADAPTIVE INCREMENTAL LEARNING RESULTS

In this appendix we report complementary results involvingour adaptive incremental learning

strategy presented in chapter 5.

1 Satimage - Swarm Results

In this section, we have depicted from Figure V.2 to V.6 the entire sequence of swarms in-

volving the case study presented in Figure V.1 in section 5.2.3.4. Through this example, it can

be clearly seen (1) the dynamism concerning the moving of theparticles and (2) the different

classifier ensembles selected from several datasetsD(k).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
6

8

10

12

14

16

18

20

22

24

Number of samples

E
rr

or
 R

at
e

C*(11)
C*(13)

C*(7)

C*(13)

C*(7)

C*(5)

C*(10)

C*(15)

C*(11)
C*(5)

C*(11)

C*(9) C*(13)
C*(9)

C*(9)

C*(5)

C*(15)

C*(13)

C*(19) C*(17)

C*(11)

C*(11)

C*(15)

C*(13)

C*(7)

IS−AIL
IEoC−AIL

Figure V.1 Results concerning generalization errors and cardinalities for
each datasetD(k) for a given replication comparing AIL in single model

(IS-AIL) and ensembles dynamically selected (IEoC-AIL).
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Figure V.2 Sequence of swarms and corresponding particles selected as
ensembles between the datasetsD(1) andD(6). The sequence continues in

Figures V.3, V.4, V.5, and V.6
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Figure V.3 Sequence of swarms and corresponding particles selected as
ensembles between the datasetsD(7) andD(12). The other swarms are

depicted in Figures V.4, V.5, and V.6.
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Figure V.4 Sequence of swarms and corresponding particles selected as
ensembles between the datasetsD(13) andD(18). The final swarms are

depicted in Figures V.5 and V.6.
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Figure V.5 Sequence of swarms and ensembles selected between the
datasetsD(19) andD(24). The last swarm is depicted in Figure V.6
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Figure V.6 Last swarm of the sequence.D(25) - DPSO/C∗(7)

2 Case Study - DNA results

This section presents further results and evidences on the system parameters’ dynamism and se-

lection of solutions into ensembles for an additional case study, which corresponds to the DNA

database. The results are presented through illustrationsfollowing the same way employed in

chapter 5 (sections 5.2.3.3 and 5.2.3.4).

First of all, we depict in Figure V.7 the trajectory covered by the best solution found for each

incremental learning process over different datasetsD(k). Next, Figure V.8 shows an example

on how the solutions were found for each datasetD(k) hyper-parameters when using IS-AIL.

Finally, the generalization errors obtained by combining the solutions found are plotted in

Figure V.9. The sequences of swarms computed for each dataset D(k) are listed in Figures

V.10, V.11, and V.12. Overall, these results also confirm thesame conclusions discussed in this

thesis and exposed in chapter 5.
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Figure V.10 Swarms and particles selected as ensembles between the
datasetsD(1) andD(6). The sequence continues in Figure V.11
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Figure V.11 Swarms and particles selected as ensembles between the
datasetsD(7) andD(12). The sequence continues in Figure V.12
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Figure V.12 Swarms and particles selected as ensembles between the
datasetsD(13) andD(18). The sequence continues in Figure V.13
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Figure V.13 Swarms and particles selected as ensembles between the
datasetsD(19) andD(24). The sequence continues in Figure V.14
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Figure V.14 Last swarms and particles selected as ensemblesbetween the
datasetsD(25) andD(29).
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